Skip to main content
Log in

Step-wise addition of disulfide bridge in firefly luciferase controls color shift through a flexible loop: a thermodynamic perspective

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Multi-color bioluminescence is developed using the introduction of single/double disulfide bridges in firefly luciferase. The bioluminescence reaction, which uses luciferin, Mg2+-ATP and molecular oxygen to yield an electronically excited oxyluciferin, is carried out by the luciferase and emits visible light. The bioluminescence color of firefly luciferases is determined by the luciferase sequence and assay conditions. It has been proposed that the stability of a protein may increase through the introduction of a disulfide bridge that decreases the configurational entropy of unfolding. Single and double disulfide bridges are introduced into Photinus pyralis firefly luciferase to make separate mutant enzymes with a single/double bridge (C81–A105C, L306C–L309C, P451C–V469C; C81–A105C/P451C–V469C, and A296C–A326C/P451C–V469C). By introduction of disulfide bridges using site-directed mutagenesis in Photinus pyralis luciferase the color of emitted light was changed to red or kept in different extents. The bioluminescence color shift occurred with displacement of a critical loop in the luciferase structure without any change in green emitter mutants. Thermodynamic analysis revealed that among mutants, L306C–L309C shows a remarkable stability against urea denaturation and also a considerable increase in kinetic stability and a clear shift in bioluminescence spectra towards red.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. F. Greer III, A. A. Szalay, Imaging of light emission from the expression of luciferases in living cells and organisms: a review, Luminescence, 2002, 17, 43–74.

    Article  CAS  PubMed  Google Scholar 

  2. J. Hastings, Chemistries and colors of bioluminescent reactions: a review, Gene, 1996, 173, 5–11.

    Article  CAS  PubMed  Google Scholar 

  3. A. B. Lall, D. S. F. Ventura, E. J. H. Bechara, J. M. de Souza, P. Colepicolo-Neto, V. R. Viviani, Spectral correspondence between visual spectral sensitivity and bioluminescence emission spectra in the click beetle pyrophorus punctatissimus (coleoptera: elateridae), J. Insect Physiol., 2000, 46, 1137–1141.

    Article  CAS  PubMed  Google Scholar 

  4. R. E. Schmitter, D. Njus, F. M. Sulzman, V. D. Gooch, J. Hastings, Dinoflagellate bioluminescence: a comparative study of in vitro components, J. Cell. Physiol., 1976, 87, 123–134.

    Article  CAS  PubMed  Google Scholar 

  5. V. Viviani, The origin, diversity, and structure function relationships of insect luciferases, Cell. Mol. Life Sci., 2002, 59, 1833–1850.

    Article  CAS  PubMed  Google Scholar 

  6. V. Viviani, A. Silva, G. Perez, R. Santelli, E. Bechara, F. Reinach, Cloning and molecular characterization of the cDNA for the Brazilian larval click-beetle pyrearinus termitilluminans luciferase, Photochem. Photobiol., 1999, 70, 254–260.

    Article  CAS  PubMed  Google Scholar 

  7. M. Deluca, W. McElroy, Purification and properties of firefly luciferase, Methods Enzymol., 1978, 57, 3–15.

    Article  CAS  Google Scholar 

  8. Y. Ando, K. Niwa, N. Yamada, T. Enomoto, T. Irie, H. Kubota, Y. Ohmiya, H. Akiyama, Firefly bioluminescence quantum yield and colour change by pH-sensitive green emission, Nat. Photonics, 2007, 2, 44–47.

    Article  Google Scholar 

  9. H. Seliger, W. McElroy, Spectral emission and quantum yield of firefly bioluminescence, Proc. Natl. Acad. Sci. U. S. A., 1960, 88, 136–141.

    CAS  Google Scholar 

  10. B. S. Alipour, S. Hosseinkhani, S. K. Ardestani, A. Moradi, The effective role of positive charge saturation in bioluminescence color and thermostability of firefly luciferase, Photochem. Photobiol. Sci., 2009, 8, 847–855.

    Article  CAS  Google Scholar 

  11. B. R. Branchini, D. M. Ablamsky, M. H. Murtiashaw, L. Uzasci, H. Fraga, T. L. Southworth, Thermostable red and green light-producing firefly luciferase mutants for bioluminescent reporter applications, Anal. Biochem., 2007, 361, 253–262.

    Article  CAS  PubMed  Google Scholar 

  12. G. H. E. Law, O. A. Gandelman, L. C. Tisi, C. R. Lowe, J. A. H. Murray, Mutagenesis of solvent-exposed amino acids in Photinus pyralis luciferase improves thermostability and pH-tolerance, Biochem. J., 2006, 397, 305–312.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. A. Riahi-Madvar, S. Hosseinkhani, Design and characterization of novel trypsin-resistant firefly luciferases by site-directed mutagenesis, Protein Eng., Des. Sel., 2009, 22, 655–663.

    Article  CAS  Google Scholar 

  14. L. Tisi, P. White, D. Squirrell, M. Murphy, C. Lowe, J. Murray, Development of a thermostable firefly luciferase, Anal. Chim. Acta, 2002, 457, 115–123.

    Article  CAS  Google Scholar 

  15. P. J. White, D. J. Squirrell, P. Arnaud, C. R. Lowe, J. Murray, Improved thermostability of the North American firefly luciferase: saturation mutagenesis at position 354, Biochem. J., 1996, 319, 343–350.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. K. Hirokawa, N. Kajiyama, S. Murakami, Improved practical usefulness of firefly luciferase by gene chimerization and random mutagenesis, Biochim. Biophys. Acta, Protein Struct. Mol. Enzymol., 2002, 1597, 271–279.

    Article  CAS  Google Scholar 

  17. A. Roda, Bioluminescence and Chemiluminescence: Perspectives for the 21st Century: Proceedings of the 10th International Symposium on Bioluminescence and Chemiluminescence Held at Bologna, Italy, September, 1998, John Wiley, 1999.

    Google Scholar 

  18. M. Imani, S. Hosseinkhani, S. Ahmadian, M. Nazari, Design and introduction of a disulfide bridge in firefly luciferase: increase of thermostability and decrease of pH sensitivity, Photochem. Photobiol. Sci., 2010, 9, 1167–1177.

    Article  CAS  PubMed  Google Scholar 

  19. M. Nazari, S. Hosseinkhani, Design of disulfide bridge as an alternative mechanism for color shift in firefly luciferase and development of secreted luciferase, Photochem. Photobiol. Sci., 2011, 10, 1203–1215.

    Article  CAS  PubMed  Google Scholar 

  20. C. N. Pace, D. V. Laurents, J. A. Thomson, pH Dependence of the urea and guanidine hydrochloride denaturation of ribonuclease A and ribonuclease T1, Biochemistry, 1990, 29, 2564–2572.

    Article  CAS  PubMed  Google Scholar 

  21. C. Pace, J. Hermans, The stability of globular protein, Crit. Rev. Biochem. Mol. Biol., 1975, 3, 1–43.

    CAS  Google Scholar 

  22. P. L. Privalov, S. J. Gill, Stability of protein structure and hydrophobic interaction, Adv. Protein Chem., 1988, 39, 191.

    Article  CAS  PubMed  Google Scholar 

  23. W. M. Jackson, J. F. Brandts, Thermodynamics of protein denaturation. Calorimetric study of the reversible denaturation of chymotrypsinogen and conclusions regarding the accuracy of the two-state approximation, Biochemistry, 1970, 9, 2294–2301.

    Article  CAS  PubMed  Google Scholar 

  24. P. Privalov, N. Khechinashvili, A thermodynamic approach to the problem of stabilization of globular protein structure: a calorimetric study, J. Mol. Biol., 1974, 86, 665–684.

    Article  CAS  PubMed  Google Scholar 

  25. P. L. Privalov, S. A. Potekhin, Scanning microcalorimetry in studying temperature-induced changes in proteins, Methods Enzymol., 1986, 131, 4–51.

    Article  CAS  PubMed  Google Scholar 

  26. R. F. Greene, C. N. Pace, Urea and guanidine hydrochloride denaturation of ribonuclease, lysozyme, α-chymotrypsin, and β-lactoglobulin, J. Biol. Chem., 1974, 249, 5388–5393.

    Article  CAS  PubMed  Google Scholar 

  27. C. Pace, Determination and analysis of urea and guanidine hydrochloride denaturation curves, Methods Enzymol., 1986, 131, 266–280.

    Article  CAS  PubMed  Google Scholar 

  28. M. M. Santoro, D. Bolen, Unfolding free energy changes determined by the linear extrapolation method. 1. Unfolding of phenylmethanesulfonyl. alpha.-chymotrypsin using different denaturants, Biochemistry, 1988, 27, 8063–8068.

    Article  CAS  PubMed  Google Scholar 

  29. M. M. Santoro, D. Bolen, A test of the linear extrapolation of unfolding free energy changes over an extended denaturant concentration range, Biochemistry, 1992, 31, 4901–4907.

    Article  CAS  PubMed  Google Scholar 

  30. B. W. Matthews, Studies on protein stability with T4 lysozyme, Adv. Protein. Chem., 1995, 46, 249–278.

    Article  CAS  PubMed  Google Scholar 

  31. D. Shortle, Probing the determinants of protein folding and stability with amino acid substitutions, J. Biol. Chem., 1989, 264, 5315–5318.

    Article  CAS  PubMed  Google Scholar 

  32. S. Hosseinkhani, Molecular enigma of multicolor bioluminescence of firefly luciferase, Cell. Mol. Life Sci., 2011, 68, 1167–1182.

    Article  CAS  PubMed  Google Scholar 

  33. K. Khalifeh, B. S. Alipour, The effect of surface charge balance on thermodynamic stability and kinetics of refolding of firefly luciferase, BMB Rep., 2011, 44, 102–106.

    Article  CAS  PubMed  Google Scholar 

  34. N. Tafreshi, M. Sadeghizadeh, R. Emamzadeh, B. Ranjbar, H. Naderi-Manesh, S. Hosseinkhani, Site-directed mutagenesis of firefly luciferase: implication of conserved residue (s) in bioluminescence emission spectra among firefly luciferases, Biochem. J., 2008, 412, 27–33.

    Article  CAS  PubMed  Google Scholar 

  35. P. Maghami, B. Ranjbar, S. Hosseinkhani, A. Ghasemi, A. Moradi, P. Gill, Relationship between stability and bioluminescence color of firefly luciferase, Photochem. Photobiol. Sci., 2010, 9, 376–383.

    Article  CAS  PubMed  Google Scholar 

  36. A. Moradi, S. Hosseinkhani, H. Naderi-Manesh, M. Sadeghizadeh, B. S. Alipour, Effect of charge distribution in a flexible loop on the bioluminescence color of firefly luciferases, Biochemistry, 2009, 48, 575–582.

    Article  CAS  PubMed  Google Scholar 

  37. M. Mortazavi, S. Hosseinkhani, Design of thermostable luciferases through arginine saturation in solvent-exposed loops, Protein Eng., Des. Sel., 2011, 24, 893–903.

    Article  CAS  Google Scholar 

  38. C. A. Royer, Approaches to teaching fluorescence spectroscopy, Biophys. J., 1995, 68, 1191.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. G. Semisotnov, N. Rodionova, O. Razgulyaev, V. Uversky, A. Gripas, R. Gilmanshin, Study of the “molten globule” intermediate state in protein folding by a hydrophobic fluorescent probe, Biopolymers, 1991, 31, 119–128.

    Article  CAS  PubMed  Google Scholar 

  40. C. N. Pace, J. M. Scholtz, Measuring the conformational stability of a protein, Protein Struct.: A Practical Approach, 1997, 2, 299–321.

    Google Scholar 

  41. N. Fernandez-Fuentes, C. J. Madrid-Aliste, B. K. Rai, J. E. Fajardo, A. Fiser, M4T: a comparative protein structure modeling server, Nucleic Acids Res., 2007, 35, W363–W368.

    Article  PubMed  PubMed Central  Google Scholar 

  42. D. Rykunov, E. Steinberger, C. J. Madrid-Aliste, A. Fiser, Improved scoring function for comparative modeling using the M4T method, J. Struct. Funct. Genomics, 2009, 10, 95–99.

    Article  CAS  PubMed  Google Scholar 

  43. K. Tina, R. Bhadra, N. Srinivasan, PIC: protein interactions calculator, Nucleic Acids Res., 2007, 35, W473–W476.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. G. L. Ellman, Tissue sulfhydryl groups, Arch. Biochem. Biophys., 1959, 82, 70–77.

    Article  CAS  PubMed  Google Scholar 

  45. H. Fraga, Firefly luminescence: a historical perspective and recent developments, Photochem. Photobiol. Sci., 2008, 7, 146–158.

    Article  CAS  PubMed  Google Scholar 

  46. V. R. Viviani, A. J. Silva Neto, F. G. C. Arnoldi, J. A. R. G. Barbosa, Y. Ohmiya, The influence of the loop between residues 223–235 in beetle luciferase bioluminescence spectra: a solvent gate for the active site of pH-sensitive luciferases, Photochem. Photobiol., 2008, 84, 138–144.

    CAS  PubMed  Google Scholar 

  47. M. Matsumura, B. W. Matthews, Stabilization of functional proteins by introduction of multiple disulfide bonds, Methods Enzymol., 1991, 202, 336–356.

    Article  CAS  PubMed  Google Scholar 

  48. M. Matsumura, W. J. Becktel, M. Levitt, B. W. Matthews, Stabilization of phage T4 lysozyme by engineered disulfide bonds, Proc. Natl. Acad. Sci. U. S. A., 1989, 86, 6562–5666.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. J. M. Mason, M. J. Cliff, R. B. Sessions, A. R. Clarke, Low energy pathways and non-native interactions, J. Biol. Chem., 2005, 280, 40494–40499.

    Article  CAS  PubMed  Google Scholar 

  50. S. F. Betz, Disulfide bonds and the stability of globular proteins, Protein Sci., 1993, 2, 1551–1558.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. R. A. Deshpande, M. I. Khan, V. Shankar, Equilibrium unfolding of RNase Rs from Rhizopus stolonifer: pH dependence of chemical and thermal denaturation, Biochim. Biophys. Acta, Proteins Proteomics, 2003, 1648, 184–194.

    Article  CAS  Google Scholar 

  52. Z. A. Bayat, S. Hosseinkhani, R. Jafari, K. Khajeh, Relationship between stability and flexibility in the most flexible region of Photinus pyralis luciferase, Biochim. Biophys. Acta, Proteins Proteomics, 2011, 1824, 350–358.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saman Hosseinkhani.

Additional information

Electronic supplementary information (ESI) available. See DOI: 10.1039/c2pp25140j

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nazari, M., Hosseinkhani, S. & Hassani, L. Step-wise addition of disulfide bridge in firefly luciferase controls color shift through a flexible loop: a thermodynamic perspective. Photochem Photobiol Sci 12, 298–308 (2013). https://doi.org/10.1039/c2pp25140j

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c2pp25140j

Navigation