Skip to main content
Log in

Fluorescence and two-photon absorption of push—pull aryl(bi)thiophenes: structure—property relationships

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Photophysical and TPA properties of series of push—pull aryl(bi)thiophene chromophores bearing electron-donating (D) and electron-withdrawing (A) end-groups of increasing strength are presented. All compounds show an intense intramolecular charge transfer (ICT) absorption band in the visible region. Increasing the D and/or A strength as well as the length of the conjugated path induces bathochromic and hyperchromic shifts of the absorption band as reported for analogous push—pull polyenes. Yet, in contrast with corresponding push—pull polyenes, a significant increase in fluorescence is observed. In particular, chromophores built from a phenyl—bithienyl conjugated path and bearing strong D and A end-groups were found to combine very large one and two-photon brightness as well as strong emission in the red/NIR region. These molecules hold promise as biphotonic fluorescent probes for bioimaging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Roncali, Synthetic principles for bandgap control in linear pi-conjugated systems, Chem. Rev. 1997, 97, 173–205.

    Article  CAS  PubMed  Google Scholar 

  2. A. Mishra, C.-Q. Ma and P. Baeuerle, Functional oligothiophenes: molecular design for multidimensional nanoarchitectures and their applications, Chem. Rev. 2009, 109, 1141–1276.

    Article  CAS  PubMed  Google Scholar 

  3. Handbook of Thiophene-Based Materials: Applications in Organic electronics and Photonics, ed. F. Perepichka and D. F. Perepichka, Wiley, New York, 2009.

    Google Scholar 

  4. G. Barbarella, M. Melucci and G. Sotgiu, The versatile thiophene: an overview of recent research on thiophene-based materials, Adv. Mater. 2005, 17, 1581–1593.

    Article  CAS  Google Scholar 

  5. A. Pron, P. Gawrys, M. Zagorska, D. Djurado and R. Demadrille, Electroactive materials for organic electronics: preparation strategies, structural aspects and characterization techniques, Chem. Soc. Rev. 2010, 39, 2577–2632.

    Article  CAS  PubMed  Google Scholar 

  6. P. M. Beaujuge, J. M. J. Fréchet, Molecular design and ordering effects in p-functional materials for transistor and solar cell applications, J. Am. Chem. Soc. 2011, 133, 20009–20029.

    Article  CAS  PubMed  Google Scholar 

  7. A. R. Murphy, J. M. J. Fréchet, Organic semiconducting oligomers for use in thin film transistors, Chem. Rev. 2007, 107, 1066–1096.

    Article  CAS  PubMed  Google Scholar 

  8. C. Wang, H. Dong, W. Hu, Y. Liu and D. Zhu, Semiconducting p-conjugated systems in field-effect transistors: a material odyssey of organic electronics, Chem. Rev. 2011, 112, 2208–2267.

    Article  PubMed  CAS  Google Scholar 

  9. J. Roncali, Linear pi-conjugated systems derivatized with C-60-fullerene as molecular heterojunctions for organic photovoltaics, Chem. Soc. Rev. 2005, 34, 483–495.

    Article  CAS  PubMed  Google Scholar 

  10. J. Pina, S. S. de Melo, H. D. Burrows, R. M. F. Batista, S. P. G. Costa and M. M. M. Raposo, Spectral and photophysical characterization of donor-pi-acceptor arylthienyl- and bithienyl-benzothiazole derivatives in solution and solid state, J. Phys. Chem. A 2007, 111, 8574–8578.

    Article  CAS  PubMed  Google Scholar 

  11. R. M. F. Batista, S. P. G. Costa, M. Belsley and M. M. M. Raposo, Synthesis and optical properties of novel, thermally stable phenanthrolines bearing an arylthienyl-imidazo conjugation pathway, Dyes Pigm. 2009, 80, 329–336.

    Article  CAS  Google Scholar 

  12. F. Mariano, M. Mazzeo, Y. Duan, G. Barbarella, L. Favaretto, S. Carallo, R. Cingolani and G. Gigli, Very low voltage and stable p-i-n organic light-emitting diodes using a linear S, S-dioxide oligothiophene as emitting layer, Appl. Phys. Lett. 2009, 94, 063510.

    Article  CAS  Google Scholar 

  13. X. H. Zhu, J. B. Peng, Y. Caoa and J. Roncali, Solution-processable single-material molecular emitters for organic light-emitting devices, Chem. Soc. Rev. 2011, 40, 3509–3524.

    Article  CAS  PubMed  Google Scholar 

  14. F. Zhang, D. Wu, Y. Xu and X. Feng, Thiophene-based conjugated oligomers for organic solar cells, J. Mater. Chem. 2011, 21, 17590–17600.

    Article  CAS  Google Scholar 

  15. A. Mishra, P. Bäuerle, Small molecule organic semiconductors on the move: promises for future solar energy technology, Angew. Chem., Int. Ed. 2012, 51, 2020–2067.

    Article  CAS  Google Scholar 

  16. S. Ko, E. Verploegen, S. Hong, R. Mondal, E. T. Hoke, M. F. Toney, M. D. McGehee and Z. Bao, 3,4-Disubstituted polyalkylthiophenes for high-performance thin-film transistors and photovoltaics, J. Am. Chem. Soc. 2011, 133, 16722–16725.

    Article  CAS  PubMed  Google Scholar 

  17. C. Mallet, G. Savitha, M. Allain, V. Kozmik, J. Svoboda, P. Frere and J. Roncali, Synthesis and electronic properties of D–A–D triads based on 3-alkoxy-4-cyanothiophene and benzothienothiophene blocks, J. Org. Chem. 2012, 77, 2041–2046.

    Article  CAS  PubMed  Google Scholar 

  18. Y.-J. Cheng, S.-H. Yang and C.-S. Hsu, Synthesis of conjugated polymers for organic solar cell applications, Chem. Rev. 2009, 109, 5868–5923.

    Article  CAS  PubMed  Google Scholar 

  19. R. Schueppel, K. Schmidt, C. Uhrich, K. Schulze, D. Wynands, J. L. Bredas, E. Brier, E. Reinold, H. B. Bu, P. Baeuerle, B. Maennig, M. Pfeiffer and K. Leo, Optimizing organic photovoltaics using tailored heterojunctions: A photoinduced absorption study of oligothiophenes with low band gaps, Phys. Rev. B 2008, 77, 085311.

    Article  CAS  Google Scholar 

  20. I. D. W. Samuel and G. A. Turnbull, Organic semiconductor lasers, Chem. Rev. 2007, 107, 1272–1295.

    Article  CAS  PubMed  Google Scholar 

  21. J.-i. Nishida, T. Miyagawa and Y. Yamashita, Novel thiophene oligomers containing a redox active hexaarylethane unit, Org. Lett. 2004, 6, 2523–2526.

    Article  CAS  PubMed  Google Scholar 

  22. S. R. Marder, C. B. Gorman, B. G. Tiemann and L. T. Cheng, Stronger acceptors can diminish nonlinear optical-response in simple donor–acceptor polyenes, J. Am. Chem. Soc. 1993, 115, 3006–3007.

    Article  CAS  Google Scholar 

  23. S. R. Marder, L. T. Cheng, B. G. Tiemann, A. C. Friedli, M. Blanchard-Desce, J. W. Perry and J. Skindhoj, Large 1st hyperpolarizabilities in push–pull polyenes by tuning of the bond-length alternation and aromaticity, Science 1994, 263, 511–514.

    Article  CAS  PubMed  Google Scholar 

  24. S. P. G. Costa, R. M. F. Batista, P. Cardoso, M. Belsley and M. M. M. Raposo, 2-arylthienyl-substituted 1,3-benzothiazoles as new nonlinear optical chromophores, Eur. J. Org. Chem. 2006 3938–3946.

    Google Scholar 

  25. R. M. F. Batista, S. P. G. Costa, M. Belsley, C. Lodeiro and M. M. M. Raposo, Synthesis and characterization of novel (oligo)thienyl-imidazo-phenanthrolines as versatile pi-conjugated systems for several optical applications, Tetrahedron 2008, 64, 9230–9238.

    Article  CAS  Google Scholar 

  26. M. M. M. Raposo, A. Ferreira, M. Belsley and J. Moura, 5’-Alkoxy-2,2’-bithiophene azo dyes: a novel promising series of NLO-chromophores, Tetrahedron 2008, 64, 5878–5884.

    Article  CAS  Google Scholar 

  27. C. Herbivo, A. Comel, G. Kirsch, A. M. C. Fonseca, M. Belsley and M. M. M. Raposo, Synthesis and characterization of novel, thermally stable 2-aryl-5-dicyanovinylthiophenes and 5-aryl-5’-dicyanovinyl-2,2’-bithiophenes as potentially promising non-linear optical materials, Dyes Pigm. 2010, 86, 217–226.

    Article  CAS  Google Scholar 

  28. M. Blanchard-Desce, V. Alain, P. V. Bedworth, S. R. Marder, A. Fort, C. Runser, M. Barzoukas, S. Lebus and R. Wortmann, Large quadratic hyperpolarizabilities with donor–acceptor polyenes exhibiting optimum bond length alternation: correlation between structure and hyperpolarizability, Chem.–Eur. J. 1997, 3, 1091–1104.

    Article  CAS  Google Scholar 

  29. G. Ridolfi, N. Camaioni, P. Samori, M. Gazzano, G. Accorsi, N. Armaroli, L. Favaretto and G. Barbarella, All-thiophene donor–acceptor blends: photophysics, morphology and photoresponse, J. Mater. Chem. 2005, 15, 895–901.

    Article  CAS  Google Scholar 

  30. I. Palama, F. Di Maria, I. Viola, E. Fabiano, G. Gigli, C. Bettini and G. Barbarella, Live-cell-permeant thiophene fluorophores and cell-mediated formation of fluorescent fibrils, J. Am. Chem. Soc. 2011, 133, 17777–17785.

    Article  CAS  PubMed  Google Scholar 

  31. M. L. Capobianco, G. Barbarella and A. Manetto, Oligothiophenes as fluorescent markers for biological applications, Molecules 2012, 17, 910–933.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. M. Duca, B. Dozza, E. Lucarelli, S. Santi, A. Di Giorgio and G. Barbarella, Fluorescent labeling of human mesenchymal stem cells by thiophene fluorophores conjugated to a lipophilic carrier, Chem. Commun. 2010, 46, 7948–7950.

    Article  CAS  Google Scholar 

  33. G. Sotgiu, M. Zambianchi, G. Barbarella, F. Aruffo, F. Cipriani and A. Ventola, Rigid-core fluorescent oligothiophene- S, S-dioxide isothiocyanates. Synthesis, optical characterization, and conjugation to monoclonal antibodies, J. Org. Chem. 2003, 68, 1512–1520.

    Article  CAS  PubMed  Google Scholar 

  34. G. Barbarella, M. Zambianchi, O. Pudova, V. Paladini, A. Ventola, F. Cipriani, G. Gigli, R. Cingolani and G. Citro, Oligothiophene isothiocyanates as a new class of fluorescent markers for biopolymers, J. Am. Chem. Soc. 2001, 123, 11600–11607.

    Article  CAS  PubMed  Google Scholar 

  35. M. Pawlicki, H. A. Collins, R. G. Denning and H. L. Anderson, Two-photon absorption and the design of two-photon dyes, Angew. Chem., Int. Ed. 2009, 48, 3244–3266.

    Article  CAS  Google Scholar 

  36. F. Terenziani, C. Katan, E. Badaeva, S. Tretiak, M. Blanchard-Desce, Enhanced two-photon absorption of organic chromophores: theoretical and experimental assessments, Adv. Mater. 2008, 20, 4641–4678.

    Article  CAS  Google Scholar 

  37. G. S. He, L.-S. Tan, Q. Zheng and P. N. Prasad, multiphoton absorbing materials: molecular designs, characterizations, and applications, Chem. Rev. 2008, 108, 1245–1330.

    Article  CAS  PubMed  Google Scholar 

  38. H. M. Kim and B. R. Cho, Two-photon probes for intracellular free metal ions, acidic vesicles, and lipid rafts in live tissues, Acc. Chem. Res. 2009, 42, 863–872.

    Article  CAS  PubMed  Google Scholar 

  39. H. Myung Kim, B. Rae Cho, Two-photon materials with large two-photon cross sections. Structure-property relationship, Chem. Commun. 2009 153–164.

    Google Scholar 

  40. M. Blanchard-Desce, Molecular engineering of NLO-phores for new NLO microscopies, C. R. Phys. 2002, 3, 439–448.

    Article  CAS  Google Scholar 

  41. M. Drobizhev, N. S. Makarov, S. E. Tillo, T. E. Hughes and A. Rebane, Describing two-photon absorptivity of fluorescent proteins with a new vibronic coupling mechanism, J. Phys. Chem. B 2012, 116, 1736–1744.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. M. Drobizhev, N. S. Makarov, S. E. Tillo, T. E. Hughes and A. Rebane, Two-photon absorption properties of fluorescent proteins, Nat. Methods 2011, 8, 393–399.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. W. Denk, J. H. Strickler and W. W. Webb, Two-photon laser scanning fluorescence microscopy, Science 1990, 248, 73–76.

    Article  CAS  PubMed  Google Scholar 

  44. K. Svoboda, W. Denk, D. Kleinfeld and D. W. Tank, In vivo dendritic calcium dynamics in neocortical pyramidal neurons, Nature 1997, 385, 161–165.

    Article  CAS  PubMed  Google Scholar 

  45. H. Meier, Conjugated oligomers with terminal donor–acceptor substitution, Angew. Chem., Int. Ed. 2005, 44, 2482–2506.

    Article  CAS  Google Scholar 

  46. S. Yao, H.-Y. Ahn, X. Wang, J. Fu, E. W. Van Stryland, D. J. Hagan and K. D. Belfield, Donor–Acceptor–Donor Fluorene Derivatives for Two-Photon Fluorescence Lysosomal Imaging, J. Org. Chem. 2010, 75, 3965–3974.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. C. D. Andrade, C. O. Yanez, L. Rodriguez and K. D. Belfield, A series of fluorene-based two-photon absorbing molecules: synthesis, linear and nonlinear characterization, and bioimaging, J. Org. Chem. 2010, 75, 3975–3982.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. D. R. Larson, W. R. Zipfel, R. M. Williams, S. W. Clark, M. P. Bruchez, F. W. Wise and W. W. Webb, Water-soluble quantum dots for multiphoton fluorescence imaging in vivo, Science 2003, 300, 1434–1436.

    Article  CAS  PubMed  Google Scholar 

  49. L. Ventelon, S. Charier, L. Moreaux, J. Mertz, M. Blanchard-Desce, Nanoscale push–push dihydrophenanthrene derivatives as novel fluorophores for two-photon-excited fluorescence, Angew. Chem., Int. Ed. 2001, 40, 2098–2101.

    Article  CAS  Google Scholar 

  50. T. R. Krishna, M. Parent, M. H. V. Werts, L. Moreaux, S. Gmouh, S. Charpak, A.-M. Caminade, J.-P. Majoral, M. Blanchard-Desce, Water-soluble dendrimeric two-photon tracers for in vivo imaging, Angew. Chem., Int. Ed. 2006, 45, 4645–4648.

    Article  CAS  Google Scholar 

  51. O. Mongin, T. R. Krishna, M. H. V. Werts, A.-M. Caminade, J.-P. Majoral, M. Blanchard-Desce, A modular approach to two-photon absorbing organic nanodots: brilliant dendrimers as an alternative to semiconductor quantum dots?, Chem. Commun. 2006 915–917.

    Google Scholar 

  52. V. Parthasarathy, S. Fery-Forgues, E. Campioli, G. Recher, F. Terenziani, M. Blanchard-Desce, Dipolar versus octupolar triphenylamine-based fluorescent organic nanoparticles as brilliant one- and two-photon emitters for (Bio)imaging, Small 2011, 7, 3219–3229.

    Article  CAS  PubMed  Google Scholar 

  53. S. Kim, T. Y. Ohulchanskyy, H. E. Pudavar, R. K. Pandey and P. N. Prasad, Organically Modified Silica Nanoparticles Co-encapsulating photosensitizing drug and aggregation-enhanced two-photon absorbing fluorescent dye aggregates for two-photon photodynamic therapy, J. Am. Chem. Soc. 2007, 129, 2669–2675.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. K. Ogawa and Y. Kobuke, Design of two-photon absorbing materials for molecular optical memory and photodynamic therapy, Org. Biomol. Chem. 2009, 7, 2241–2246.

    Article  CAS  PubMed  Google Scholar 

  55. C. B. Nielsen, J. Arnbjerg, M. Johnsen, M. Jørgensen and P. R. Ogilby, Molecular tuning of phenylene-vinylene derivatives for two-photon photosensitized singlet oxygen production, J. Org. Chem. 2009, 74, 9094–9104.

    Article  CAS  PubMed  Google Scholar 

  56. J. R. Starkey, A. K. Rebane, M. A. Drobizhev, F. Meng, A. Gong, A. Elliott, K. McInnerney and C. W. Spangler, New two-photon activated photodynamic therapy sensitizers induce xenograft tumor regressions after near-IR laser treatment through the body of the host mouse, Clin. Cancer Res. 2008, 14, 6564–6573.

    Article  CAS  PubMed  Google Scholar 

  57. H. A. Collins, M. Khurana, E. H. Moriyama, A. Mariampillai, E. Dahlstedt, M. Balaz, M. K. Kuimova, M. Drobizhev, V. X. D. Yang, D. Phillips, A. Rebane, B. C. Wilson and H. L. Anderson, Blood-vessel closure using photosensitizers engineered for two-photon excitation, Nat. Photonics 2008, 2, 420–424.

    Article  CAS  Google Scholar 

  58. M. Gary-Bobo, Y. Mir, C. Rouxel, D. Brevet, I. Basile, M. Maynadier, O. Vaillant, O. Mongin, M. Blanchard-Desce, A. Morère, M. Garcia, J.-O. Durand and L. Raehm, Mannose-functionalized mesoporous silica nanoparticles for efficient two-photon photodynamic therapy of solid tumors, Angew. Chem., Int. Ed. 2011, 50, 11425–11429.

    Article  CAS  Google Scholar 

  59. M. Gary-Bobo, Y. Mir, C. Rouxel, D. Brevet, O. Hocine, M. Maynadier, A. Gallud, A. Da Silva, O. Mongin, M. Blanchard-Desce, S. Richeter, B. Loock, P. Maillard, A. Morere, M. Garcia, L. Raehm and J. O. Durand, Multifunctionalized mesoporous silica nanoparticles for the in vitro treatment of retinoblastoma: drug delivery, one and two-photon photodynamic therapy, Int. J. Pharm. 2012, 432, 99–104.

    Article  CAS  PubMed  Google Scholar 

  60. L. Donato, A. Mourot, C. M. Davenport, C. Herbivo, D. Warther, J. Léonard, F. Bolze, J.-F. Nicoud, R. H. Kramer, M. Goeldner and A. Specht, Water-soluble, donor–acceptor biphenyl derivatives in the 2-(o-Nitrophenyl)propyl series: highly efficient two-photon uncaging of the neurotransmitter ?-aminobutyric acid at ? = 800 nm, Angew. Chem., Int. Ed. 2012, 51, 1840–1843.

    Article  CAS  Google Scholar 

  61. D. Warther, S. Gug, A. Specht, F. Bolze, J. F. Nicoud, A. Mourot and M. Goeldner, Two-photon uncaging: new prospects in neuroscience and cellular biology, Bioorg. Med. Chem. 2010, 18, 7753–7758.

    Article  CAS  PubMed  Google Scholar 

  62. G. C. R. Ellis-Davies, Two-photon microscopy for chemical neuroscience, ACS Chem. Neurosci. 2011, 2, 185–197.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. G. C. R. Ellis-Davies, Caged compounds: photorelease technology for control of cellular chemistry and physiology, Nat. Methods 2007, 4, 619–628.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. D. A. Parthenopoulos and P. M. Rentzepis, Three-dimensional optical storage memory, Science 1989, 245, 843–845.

    Article  CAS  PubMed  Google Scholar 

  65. C. C. Corredor, Z.-L. Huang, K. D. Belfield, A. R. Morales and M. V. Bondar, Photochromic polymer composites for two-photon 3D optical data storage, Chem. Mater. 2007, 19, 5165–5173.

    Article  CAS  Google Scholar 

  66. P.-A. Bouit, G. Wetzel, G. Berginc, B. Loiseaux, L. Toupet, P. Feneyrou, Y. Bretonnière, K. Kamada, O. Maury and C. Andraud, Near IR nonlinear absorbing chromophores with optical limiting properties at telecommunication wavelengths, Chem. Mater. 2007, 19, 5325–5335.

    Article  CAS  Google Scholar 

  67. Q. Zheng, G. S. He and P. N. Prasad, A novel near IR two-photon absorbing chromophore: optical limiting and stabilization performances at an optical communication wavelength, Chem. Phys. Lett. 2009, 475, 250–255.

    Article  CAS  Google Scholar 

  68. G. S. He, G. C. Xu, P. N. Prasad, B. A. Reinhardt, J. C. Bhatt, R. McKellar and A. G. Dillard, Two-photon absorption and optical-limiting properties of novel organic compounds, Opt. Lett. 1995, 20, 435–437.

    Article  CAS  PubMed  Google Scholar 

  69. J. E. Ehrlich, X. L. Wu, I. Y. S. Lee, Z. Y. Hu, H. Röckel, S. R. Marder and J. W. Perry, Two-photon absorption and broadband optical limiting with bis-donor stilbenes, Opt. Lett. 1997, 22, 1843–1845.

    Article  CAS  PubMed  Google Scholar 

  70. M. Charlot, N. Izard, O. Mongin, D. Riehl, M. Blanchard-Desce, Optical limiting with soluble two-photon absorbing quadrupoles: structure-property relationships, Chem. Phys. Lett. 2006, 417, 297–302.

    Article  CAS  Google Scholar 

  71. G. Lemercier, J.-C. Mulatier, C. Martineau, R. Anémian, C. Andraud, I. Wang, O. Stéphan, N. Amari and P. Baldeck, Two-photon absorption: from optical power limiting to 3D microfabrication, C. R. Chim. 2005, 8, 1308–1316.

    Article  CAS  Google Scholar 

  72. S. Maruo, O. Nakamura and S. Kawata, Three-dimensional microfabrication with two-photon-absorbed photopolymerization, Opt. Lett. 1997, 22, 132–134.

    Article  CAS  PubMed  Google Scholar 

  73. S. Kawata, H.-B. Sun, T. Tanaka and K. Takada, Finer features for functional microdevices, Nature 2001, 412, 697–698.

    Article  CAS  PubMed  Google Scholar 

  74. W. Zhou, S. M. Kuebler, K. L. Braun, T. Yu, J. K. Cammack, C. K. Ober, J. W. Perry and S. R. Marder, An efficient two-photon-generated photoacid applied to positive-tone 3D microfabrication, Science 2002, 296, 1106–1109.

    Article  CAS  PubMed  Google Scholar 

  75. F. Claeyssens, E. A. Hasan, A. Gaidukeviciute, D. S. Achilleos, A. Ranella, C. Reinhardt, A. Ovsianikov, X. Shizhou, C. Fotakis, M. Vamvakaki, B. N. Chichkov and M. Farsari, Three-dimensional biodegradable structures fabricated by two-photon polymerization, Langmuir 2009, 25, 3219–3223.

    Article  CAS  PubMed  Google Scholar 

  76. I. Sakellari, E. Kabouraki, D. Gray, V. Purlys, C. Fotakis, A. Pikulin, N. Bityurin, M. Vamvakaki and M. Farsari, Diffusion-assisted high-resolution direct femtosecond laser writing, ACS Nano 2012, 6, 2302–2311.

    Article  CAS  PubMed  Google Scholar 

  77. L. Ventelon, L. Moreaux, J. Mertz, M. Blanchard-Desce, New quadrupolar fluorophores with high two-photon excited fluorescence, Chem. Commun. 1999 2055–2056.

    Google Scholar 

  78. O. Mongin, L. Porrès, L. Moreaux, J. Mertz, M. Blanchard-Desce, Synthesis and photophysical properties of new conjugated fluorophores designed for two-photon-excited fluorescence, Org. Lett. 2002, 4, 719–722.

    Article  CAS  PubMed  Google Scholar 

  79. L. Porrès, O. Mongin, C. Katan, M. Charlot, T. Pons, J. Mertz, M. Blanchard-Desce, Enhanced two-photon absorption with novel octupolar propeller-shaped fluorophores derived from triphenylamine, Org. Lett. 2004, 6, 47–50.

    Article  PubMed  CAS  Google Scholar 

  80. C. Le Droumaguet, O. Mongin, M. H. V. Werts, M. Blanchard-Desce, Towards “smart” multiphoton fluorophores: strongly solvatochromic probes for two-photon sensing of micropolarity, Chem. Commun. 2005 2802–2804.

    Google Scholar 

  81. M. H. V. Werts, S. Gmouh, O. Mongin, T. Pons, M. Blanchard-Desce, Strong modulation of two-photon excited fluorescence of quadripolar dyes by (De)protonation, J. Am. Chem. Soc. 2004, 126, 16294–16295.

    Article  CAS  PubMed  Google Scholar 

  82. M. G. Silly, L. Porrès, O. Mongin, P.-A. Chollet, M. Blanchard-Desce, Optical limiting in the red-NIR range with soluble two-photon absorbing molecules, Chem. Phys. Lett. 2003, 379, 74–80.

    Article  CAS  Google Scholar 

  83. O. Mongin, L. Porrès, M. Charlot, C. Katan, M. Blanchard-Desce, Synthesis, fluorescence, and two-photon absorption of a series of elongated rodlike and banana-shaped quadrupolar fluorophores: a comprehensive study of structure-property relationships, Chem.–Eur. J. 2007, 13, 1481–1498.

    Article  CAS  PubMed  Google Scholar 

  84. O. Mongin, A. Pla-Quintana, F. Terenziani, D. Drouin, C. Le Droumaguet, A.-M. Caminade, J.-P. Majoral, M. Blanchard-Desce, Organic nanodots for multiphotonics: synthesis and photophysical studies, New J. Chem. 2007, 31, 1354–1367.

    Article  CAS  Google Scholar 

  85. O. Mongin, C. Rouxel, A.-C. Robin, A. Pla-Quintana, T. Rama Krishna, G. Recher, F. Tiaho, A.-M. Caminade, J.-P. Majoral, M. Blanchard-Desce, Brilliant organic nanodots: novel nano-objects for bionanophotonics, Proc. SPIE 2008, 7040, 704006.

    Article  CAS  Google Scholar 

  86. M. Guo, O. Varnavski, A. Narayanan, O. Mongin, J.-P. Majoral, M. Blanchard-Desce and T. Goodson, Investigations of energy migration in an organic dendrimer macromolecule for sensory signal amplification, J. Phys. Chem. A 2009, 113, 4763–4771.

    Article  CAS  PubMed  Google Scholar 

  87. O. Mongin, C. Rouxel, J.-M. Vabre, Y. Mir, A. Pla-Quintana, Y. Wei, A.-M. Caminade, J.-P. Majoral, M. Blanchard-Desce, Customized multiphotonics nanotools for bioapplications: soft organic nanodots as an eco-friendly alternative to quantum dots, Proc. SPIE 2009, 7403, 740303.

    Article  CAS  Google Scholar 

  88. A. Rebane, M. Drobizhev, N. S. Makarov, E. Beuerman, J. E. Haley, M. K. Douglas, A. R. Burke, J. L. Flikkema and T. M. Cooper, Relation between two-photon absorption and dipolar properties in a series of fluorenyl-based chromophores with electron donating or electron withdrawing substituents, J. Phys. Chem. A 2011, 115, 4255–4262.

    Article  CAS  PubMed  Google Scholar 

  89. C. Herbivo, A. Comel, G. Kirsch and M. M. M. Raposo, Synthesis of 5-aryl-5’-formyl-2,2’-bithiophenes as new precursors for nonlinear optical (NLO) materials, Tetrahedron 2009, 65, 2079–2086.

    Article  CAS  Google Scholar 

  90. M. M. M. Raposo, M. C. R. Castro, M. Belsley and A. M. C. Fonseca, Push pull bithiophene azo-chromophores bearing thiazole and benzothiazole acceptor moieties: Synthesis and evaluation of their redox and nonlinear optical properties, Dyes Pigm. 2011, 91, 454–465.

    Article  CAS  Google Scholar 

  91. Y.-S. Yen, W.-T. Chen, C.-Y. Hsu, H.-H. Chou, J. T. Lin, M.-C. P. Yeh, Arylamine-based dyes for p-type dye-sensitized solar cells, Org. Lett. 2011, 13, 4930–4933.

    Article  CAS  PubMed  Google Scholar 

  92. F. Zhang, Y.-h. Luo, J.-s. Song, X.-z. Guo, W.-l. Liu, C.-p. Ma, Y. Huang, M.-f. Ge, Z. Bo and Q.-B. Meng, Triphenylamine-based dyes for dye-sensitized solar cells, Dyes Pigm. 2009, 81, 224–230.

    Article  CAS  Google Scholar 

  93. E. Ripaud, Y. Olivier, P. Leriche, J. Cornil and J. Roncali, Polarizability and internal charge transfer in thiophene-triphenylamine hybrid pi-conjugated systems, J. Phys. Chem. B 2011, 115, 9379–9386.

    Article  CAS  PubMed  Google Scholar 

  94. P. Leriche, P. Frere, A. Cravino, O. Aleveque and J. Roncali, Molecular engineering of the internal charge transfer in thiophene-triphenylamine hybrid pi-conjugated systems, J. Org. Chem. 2007, 72, 8332–8336.

    Article  CAS  PubMed  Google Scholar 

  95. A. Leliège, P. Blanchard, T. o. Rousseau and J. Roncali, Triphenylamine/tetracyanobutadiene-based D–A–D p-conjugated systems as molecular donors for organic solar cells, Org. Lett. 2011, 13, 3098–3101.

    Article  PubMed  CAS  Google Scholar 

  96. Q. Bricaud, A. Cravino, P. Leriche and J. Roncali, Terthiophene-cyanovinylene p-conjugated polymers as donor material for organic solar cells, Synth. Met. 2009, 159, 2534–2538.

    Article  CAS  Google Scholar 

  97. T. Narita, M. Takase, T. Nishinaga, M. Iyoda, K. Kamada and K. Ohta, Star-shaped oligothiophenes with unique photophysical properties and nanostructured polymorphs, Chem.–Eur. J. 2010, 16, 12108–12113.

    Article  CAS  PubMed  Google Scholar 

  98. S. Ellinger, K. R. Graham, P. Shi, R. T. Farley, T. T. Steckler, R. N. Brookins, P. Taranekar, J. Mei, L. A. Padilha, T. R. Ensley, H. Hu, S. Webster, D. J. Hagan, E. W. Van Stryland, K. S. Schanze and J. R. Reynolds, Donor–acceptor–donor-based p-conjugated oligomers for nonlinear optics and near-IR emission, Chem. Mater. 2011, 23, 3805–3817.

    Article  CAS  Google Scholar 

  99. X. J. Feng, P. L. Wu, H. L. Tam, K. F. Li, M. S. Wong and K. W. Cheah, Fluorene-based p-conjugated oligomers for efficient three-photon excited photoluminescence and lasing, Chem.–Eur. J. 2009, 15, 11681–11691.

    Article  CAS  PubMed  Google Scholar 

  100. V. Alain, L. Thouin, M. Blanchard-Desce, U. Gubler, C. Bosshard, P. Günter, J. Muller, A. Fort and M. Barzoukas, Molecular engineering of push–pull phenylpolyenes for nonlinear optics: improved solubility, stability, and nonlinearities, Adv. Mater. 1999, 11, 1210–1214.

    Article  CAS  Google Scholar 

  101. M. Blanchard-Desce, V. Alain, L. Midrier, R. Wortmann, S. Lebus, C. Glania, P. Krämer, A. Fort, J. Muller and M. Barzoukas, Intramolecular charge transfer and enhanced quadratic optical non-linearities in push pull polyenes, J. Photochem. Photobiol., A 1997, 105, 115–121.

    Article  CAS  Google Scholar 

  102. W. Akemann, D. Laage, P. Plaza, M. M. Martin, M. Blanchard-Desce, Photoinduced Intramolecular charge transfer in push–pull polyenes: effects of solvation, electron-donor group, and polyenic chain length, J. Phys. Chem. B 2008, 112, 358–368.

    Article  CAS  PubMed  Google Scholar 

  103. M. Blanchard-Desce, R. Wortmann, S. Lebus, J.-M. Lehn, P. Krämer, Intramolecular charge transfer in elongated donor–acceptor conjugated polyenes, Chem. Phys. Lett. 1995, 243, 526–532.

    Article  CAS  Google Scholar 

  104. D. Laage, P. Plaza, M. Blanchard-Desce and M. M. Martin, Multiple relaxation pathways in push–pull polyenes, Photochem. Photobiol. Sci. 2002, 1, 526–535.

    Article  CAS  PubMed  Google Scholar 

  105. M. Barzoukas, C. Runser, A. Fort, M. Blanchard-Desce, A two-state description of (hyper) polarizabilities of push–pull molecules based on a two-form model, Chem. Phys. Lett. 1996, 257, 531.

    Article  CAS  Google Scholar 

  106. M. Barzoukas, M. Blanchard-Desce, Molecular engineering of push–pull dipolar and quadrupolar molecules for two-photon absorption: a multivalence-bond states approach, J. Chem. Phys. 2000, 113, 3951–3959.

    Article  CAS  Google Scholar 

  107. S. J. Strickler and R. A. Berg, Relation between absorption intensity and fluorescence lifetime of molecules, J. Chem. Phys. 1962, 37, 814–822.

    Article  CAS  Google Scholar 

  108. C. Xu and W. W. Webb, Measurement of two-photon excitation cross sections of molecular fluorophores with data from 690 to 1050 nm, J. Opt. Soc. Am. B 1996, 13, 481–491.

    Article  CAS  Google Scholar 

  109. M. A. Albota, C. Xu and W. W. Webb, Two-photon fluorescence excitation cross sections of biomolecular probes from 690 to 960 nm, Appl. Opt. 1998, 37, 7352–7356.

    Article  CAS  PubMed  Google Scholar 

  110. A. Rebane, M. A. Drobizhev, N. S. Makarov, E. Beuerman, C. Nacke and J. Pahapill, Modeling non-Lorentzian two-photon absorption line shape in dipolar chromophores, J. Lumin. 2010, 130, 1055–1059.

    Article  CAS  Google Scholar 

  111. Y. M. Poronik, V. Hugues, M. Blanchard-Desce and D. T. Gryko, Octupolar merocyanine dyes: a new class of nonlinear optical chromophores, Chem.–Eur. J. 2012, 18, 9258–9266.

    Article  CAS  PubMed  Google Scholar 

  112. A. M. Brouwer, Standards for photoluminescence quantum yield measurements in solution (IUPAC Technical Report), Pure Appl. Chem. 2011, 83, 2213–2228.

    Article  CAS  Google Scholar 

  113. M. H. V. Werts, N. Nerambourg, D. Pélégry, Y. Le Grand, M. Blanchard-Desce, Action cross sections of two-photon excited luminescence of some Eu(iii) and Tb(iii) complexes, Photochem. Photobiol. Sci. 2005, 4, 531–538.

    Article  CAS  PubMed  Google Scholar 

  114. C. Katan, S. Tretiak, M. H. V. Werts, A. J. Bain, R. J. Marsh, N. Leonczek, N. Nicolaou, E. Badaeva, O. Mongin, M. Blanchard-Desce, Two-photon transitions in quadrupolar and branched chromophores: experiment and theory, J. Phys. Chem. B 2007, 111, 9468–9483.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mireille Blanchard-Desce.

Additional information

This article is published as part of a themed issue in honour of Jean-Pierre Desvergne on the occasion of his 65th birthday.

Electronic supplementary information (ESI) available. See DOI: 10.1039/c2pp25258a

Rights and permissions

Reprints and permissions

About this article

Cite this article

Genin, E., Hugues, V., Clermont, G. et al. Fluorescence and two-photon absorption of push—pull aryl(bi)thiophenes: structure—property relationships. Photochem Photobiol Sci 11, 1756–1766 (2012). https://doi.org/10.1039/c2pp25258a

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c2pp25258a

Navigation