Issue 27, 2014

Mechanical and electrical properties of multiwall carbon nanotube/polycarbonate composites for electrostatic discharge and electromagnetic interference shielding applications

Abstract

Home-made multiwall carbon nanotubes (MWCNTs) were used as a reinforcing conducting filler for a thermoplastic polymer, polycarbonate (PC) and the mechanical and electrical properties of the composites were investigated for electrostatic discharge (ESD) and electromagnetic interference (EMI) shielding applications. A uniformly dispersed MWCNT/PC composite system was fabricated using solvent casting and a combination of solvent casting and compression molding techniques. The effect of MWCNTs on the failure mechanism of the polymer under tensile loading showed a ductile to brittle transition with increasing amount of carbon nanotubes. ESD studies showed that the composite films of 2 and 5 wt% functionalized-MWCNT/PC with respective charge decay times of 1 and 0.6 s show promise as electrostatic dissipative materials. EMI shielding effectiveness of a five-layered system (∼2 mm thickness) of as-synthesized-MWCNT/PC composite films at 20 wt% loading reached 43 dB in the X-band (8.2–12.4 GHz). The primary mechanism of shielding was absorption, suggesting possible use as an EMI absorbing material. By using low pressure (contact pressure) compression molding the EMI shielding properties of bulk composites (∼2 mm thickness) improved by about 14 dB at 10 wt% MWCNT loading.

Graphical abstract: Mechanical and electrical properties of multiwall carbon nanotube/polycarbonate composites for electrostatic discharge and electromagnetic interference shielding applications

Supplementary files

Article information

Article type
Paper
Submitted
06 Dec 2013
Accepted
28 Feb 2014
First published
28 Feb 2014

RSC Adv., 2014,4, 13839-13849

Mechanical and electrical properties of multiwall carbon nanotube/polycarbonate composites for electrostatic discharge and electromagnetic interference shielding applications

S. Pande, A. Chaudhary, D. Patel, B. P. Singh and R. B. Mathur, RSC Adv., 2014, 4, 13839 DOI: 10.1039/C3RA47387B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements