Issue 63, 2014

Aqueous room temperature synthesis of zeolitic imidazole framework 8 (ZIF-8) with various concentrations of triethylamine

Abstract

In this study, a zeolitic imidazole framework (ZIF-8) was prepared, and physico-chemical characterizations were performed to investigate the influences of triethylamine (TEA) on the crystallinity, particle size, morphology, and defects of ZIF-8 synthesized via an aqueous room temperature approach with a relatively low molar ratio of ligands to metal salts. Increasing the concentration of TEA by raising the TEA/total molar ratio from 0.004 to 0.007 prompted the formation of pure phase ZIF-8, whereas a TEA/total molar ratio below 0.004 did not result in a yield of ZIF-8. The particle size of ZIF-8 decreased from approximately 288 to 133 nm with increasing TEA/total molar ratio, except at a TEA/total molar ratio of 0.007. However, an excessive TEA/total molar ratio alters the 2-MeIM chemistry, and partially forms hydroxylated 2-MeIM. Thus, this study shows that at relatively low molar ratios of ligands to metal salts, up to a maximum TEA/total molar ratio of 0.006, the TEA concentration plays an important role in assisting crystal formation and in controlling the particle size of ZIF-8. The proposed procedure enables pure phase nanoscale ZIF-8 to be synthesized with a high product yield and with minimal chemical usage.

Graphical abstract: Aqueous room temperature synthesis of zeolitic imidazole framework 8 (ZIF-8) with various concentrations of triethylamine

Article information

Article type
Paper
Submitted
20 Apr 2014
Accepted
15 Jul 2014
First published
15 Jul 2014

RSC Adv., 2014,4, 33292-33300

Author version available

Aqueous room temperature synthesis of zeolitic imidazole framework 8 (ZIF-8) with various concentrations of triethylamine

N. A. H. M. Nordin, A. F. Ismail, A. Mustafa, P. S. Goh, D. Rana and T. Matsuura, RSC Adv., 2014, 4, 33292 DOI: 10.1039/C4RA03593C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements