Skip to main content

Advertisement

Log in

Wastewater chemical contaminants: remediation by advanced oxidation processes

  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Approximately 70% of the terrestrial area is covered with water, but only a small water fraction is compatible with terrestrial life forms. Due to the increment in human consumption, the need for water resources is increasing, and it is estimated that more than 40% of the population worldwide will face water stress/scarcity within the next few decades. Water recycling and reuse may offer the opportunity to expand water resources. For that, the wastewater treatment paradigm should be changed and adequately treated wastewater should be seen as a valuable resource instead of a waste product. It is easily understandable that the exact composition and constituent concentration of wastewater vary according to its different sources (industrial, agricultural, urban usage of water). Consequently, a variety of known and emerging pollutants like heavy metals, antibiotics, pesticides, phthalates, polyaromatic hydrocarbons, halogenated compounds and endocrine disruptors have been found in natural water reservoirs, due to the limited effectiveness of conventional wastewater treatment. The conventional approach consists of a combination of physical, chemical and biological processes, aiming at the removal of large sediments such as heavier solids, scum and grease and of organic content in order to avoid the growth of microorganisms and eutrophication of the receiving water bodies. However, this approach is not sufficient to reduce the chemical pollutants and much less the emerging chemical pollutants. In this review, after some considerations concerning chemical pollutants and the problematic efficiency of their removal by conventional methods, an update is presented on the successes and challenges of novel approaches for wastewater remediation based on advanced oxidation processes. An insight into wastewater remediation involving the photodynamic approach mediated by tetrapyrrolic derivatives will be underlined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Becerra-Castro, A. R. Lopes, I. Vaz-Moreira, E. F. Silva, C. M. Manaia and O. C. Nunes, Wastewater reuse in irriga-tion: a microbiological perspective on implications in soil fertility and human and environmental health, Environ. Int., 2015, 75, 117–135, DOI: 10.1016/j.envint.2014.11.001.

    Article  CAS  PubMed  Google Scholar 

  2. J.-M. Faures, J. Hoogeveen, J. Winpenny, P. Steduto and J. Burke, Coping with water scarcity: an action framework for agriculture and food security, Food and Agriculture Organization of the United Nations (FAO), Rome, 2012. ISBN 978-92-5-107304-9.

    Google Scholar 

  3. D. Wichelns, P. Drechsel and M. Qadir, Wastewater: econ-omic asset in an urbanizing world, in Wastewater, ed. D. Wichelns, P. Drechsel and M. Qadir, Springer, Netherlands, 2015. (Available from: http://link.springer.com/10.1007/978-94-017-9545-6_1).

    Google Scholar 

  4. European Commission, Water Scarcity & Droughts in the European Union. Environment, 2016 (available from: http://ec.europa.eu/environment/water/quantity/scarcity_en.htm).

    Google Scholar 

  5. D. Bixio, C. Thoeye, J. De Koning, D. Joksimovic, D. Savic, T. Wintgens and T. Melin, Wastewater reuse in Europe, Desalination, 2006, 187, 89–101, DOI: 10.1016/j.desal.2005.04.070.

    Article  CAS  Google Scholar 

  6. A. Jagerskog and T. Jonch Clausen, Feeding a thirsty world. World Water Week, 2012, 52 p.

    Google Scholar 

  7. United Nations Educational, Scientific and Cultural Organization (UNESCO), Emerging Pollutants in Water and Wastewater, 2017 (available from: https://en.unesco.org/emergingpollutants).

    Google Scholar 

  8. J. Mateo-Sagasta, L. Raschid-Sally and A. Thebo, Global wastewater and sludge production, treatment and use, in Wastewater, ed. P. Drechsel, M. Qadir and D. Wichelns, Springer, Netherlands, 2015. (Available from: http://link.springer.com/10.1007/978-94-017-9545-6_2).

    Google Scholar 

  9. G. Bitton, Wastewater reuse, in Wastewater Microbiology, John Wiley & Sons, 3rd edn, 2005, pp. 589–607.

    Chapter  Google Scholar 

  10. V. Geissen, H. Mol, E. Klumpp, G. Umlauf, M. Nadal, M. van der Ploeg, S. E. A. T. M. van de Zee and C. J. Ritsema, Emerging pollutants in the environment: a challenge for water resource management, Int. Soil Water Conserv. Res, 2015, 3, 57–65, DOI: 10.1016/j.iswcr.2015.03.002.

    Article  Google Scholar 

  11. United Nations World Water Assessment Programme (WWAP), UN World Water Development Report: Wastewater, the untapped resource, UNESCO, Paris, 2017 (available from: http://www.unesco.org/new/en/natural-sciences/environ-ment/water/wwap/wwdr/2017-wastewater-the-untapped-resource/).

    Google Scholar 

  12. T. Deblonde, C. Cossu-Leguille and P. Hartemann, Emerging pollutants in wastewater: a review of the litera-ture, Int. J. Hyg. Environ. Health, 2011, 214, 442–448, DOI: 10.1016/j.ijheh.2011.08.002.

    Article  CAS  PubMed  Google Scholar 

  13. C. Vogelsang, M. Grung, T. G. Jantsch, K. E. Tollefsen and H. Liltved, Occurrence and removal of selected organic micropollutants at mechanical, chemical and advanced wastewater treatment plants in Norway, Water Res., 2006, 40, 3559–3570, DOI: 10.1016/j.watres.2006.07.022.

    Article  CAS  PubMed  Google Scholar 

  14. R. Rosal, A. Rodríguez, J. A. Perdigón-Melón, A. Petre, E. García-Calvo, M. J. Gómez, A. Agüera and A. R. Fernández-Alba, Occurrence of emerging pollutants in urban wastewater and their removal through biological treatment followed by ozonation, Water Res., 2010, 44, 578–588, DOI: 10.1016/j.watres.2009.07.004.

    Article  CAS  PubMed  Google Scholar 

  15. Network of reference laboratories research centres and related organisations for monitoring of emerging environ-mental substances (NORMAN Association). Emerging sub-stances. Why do we need to address emerging substances? (available from: http://www.norman-network.net/?q=node/19).

  16. Y. Luo, W. Guo, H. H. Ngo, L. D. Nghiem, F. I. Hai, J. Zhang, S. Liang and X. C. Wang, A review on the occur-rence of micropollutants in the aquatic environment and their fate and removal during wastewater treatment, Sci. Total Environ., 2014, 473-474, 619–641, DOI: 10.1016/j.scitotenv.2013.12.065.

    Article  PubMed  CAS  Google Scholar 

  17. J. O'Neill, Antimicrobial resistance: tackling a crisis for the health and wealth of nations. Review on Antimicrobial Resistance, December, 2014.

    Google Scholar 

  18. T. aus der Beek, F.-A. Weber, A. Bergmann, S. Hickmann, I. Ebert, A. Hein and A. Kuster, Pharmaceuticals in the environment-global occurrences and perspectives, Environ. Toxicol. Chem., 2015, 35, 823–835, DOI: 10.1002/etc.3339.

    Article  CAS  Google Scholar 

  19. L. Araujo, J. Wild, N. Villa, N. Camargo, D. Cubillan and A. Prieto, Determination of anti-inflammatory drugs in water samples, by in situ derivatization, solid phase micro-extraction and gas chromatography-mass spectrometry, Talanta, 2008, 75, 111–115, DOI: 10.1016/j.talanta.2007.10.035.

    Article  CAS  PubMed  Google Scholar 

  20. S. Mompelat, B. Le Bot and O. Thomas, Occurrence and fate of pharmaceutical products and by-products, from resource to drinking water, Environ. Int., 2009, 35, 803–814, DOI: 10.1016/j.envint.2008.10.008.

    Article  CAS  PubMed  Google Scholar 

  21. European Parliament and the Council. Decision No 2455/ 2001/EC of the European Parliament and of the Council of 20 November 2001 establishing the list of priority sub-stances in the field of water policy and amending Directive 2000/60/EC, Off J Eur Parliam (available from: http://eur-lex.europa.eu/legal-content/EN/TXT/?qid=1513597592161&uri=CELEX:32001D2455).

  22. European Community, Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for Community action in the field of water policy, Off J Eur Parliam, 2000, 1–82.

    Google Scholar 

  23. J. Wang and S. Wang, Removal of pharmaceuticals and personal care products (PPCPs) from wastewater: a review, J. Environ. Manage., 2016, 182, 620–640, DOI: 10.1016/j.jenvman.2016.07.049.

    CAS  Google Scholar 

  24. M. Grassi, G. Kaykioglu, V. Belgiorno and G. Lofrano, Removal of emerging contaminants from water and waste-water by adsorption process, in Emerging compounds removal from wastewater: natural and solar based treat-ments, ed. G. Lofrano, Springer, 2012, pp. 15–37.

    Chapter  Google Scholar 

  25. A. Arques and A. M. Amat, Removal of pharmaceutics by solar-driven processes, in Emerging compounds removal from wastewater: natural and solar based treatments, ed. G. Lofrano, Springer, 2012, pp. 77–91.

    Chapter  Google Scholar 

  26. Y. Günay, S. Meric and G. Lofrano, Emerging compounds removal from wastewater in constructed wetlands, in Emerging compounds removal from wastewater: natural and solar based treatments, ed. G. Lofrano, Springer, 2012, pp. 39–58.

    Google Scholar 

  27. J. Rivera-Utrilla, M. Sänchez-Polo, M. A. Ferro-Garcia, G. Prados-Joya and R. Ocampo-Perez, Pharmaceuticals as emerging contaminants and their removal from water. A review, Chemosphere, 2013, 93, 1268–1287, DOI: 10.1016/j.chemosphere.2013.07.059.

    Article  CAS  PubMed  Google Scholar 

  28. B. Li, T. Zhang, Z. Xu, H. Han and P. Fang, Rapid analysis of 21 antibiotics of multiple classes in municipal waste-water using ultra performance liquid chromatography-tandem mass spectrometry, Anal. Chim. Acta, 2009, 645, 64–72, DOI: 10.1016/j.aca.2009.04.042.

    Article  CAS  PubMed  Google Scholar 

  29. C. L. Amorim, I. S. Moreira, A. R. Ribeiro, L. H. M. L. M. Santos, C. Delerue-Matos, M. E. Tiritan and P. M. L. Castro, Treatment of a simulated wastewater amended with a chiral pharmaceuticals mixture by an aerobic granular sludge sequencing batch reactor, Int. Biodeterior. Biodegrad., 2016, 115, 277–285, DOI: 10.1016/j.ibiod.2016.09.009.

    Article  CAS  Google Scholar 

  30. M. Gavrilescu, K. Demnerova, J. Aamand, S. Agathos and F. Fava, Emerging pollutants in the environment: present and future challenges in biomonitoring, ecological risks and bioremediation, N Biotechnol., 2015, 32, 147–156, DOI: 10.1016/j.nbt.2014.01.001.

    Article  CAS  PubMed  Google Scholar 

  31. N. Nassiri Koopaei and M. Abdollahi, Health risks associ-ated with the pharmaceuticals in wastewater, Daru, J. Pharm. Sci., 2017, 25, 1–7, DOI: 10.1186/s40199-017-0176-y.

    Article  CAS  Google Scholar 

  32. R. Andreozzi, M. Raffaele and P. E. E. Nicklas, Pharmaceuticals in STP effluents and their solar photode-gradation in aquatic environment, Chemosphere, 2003, 50, 1319–1330.

    Article  CAS  PubMed  Google Scholar 

  33. C. N. D. Giang, Z. Sebesvari, F. Renaud, I. Rosendahl, Q. H. Minh and W. Amelung, Occurrence and dissipation of the antibiotics sulfamethoxazole, sulfadiazine, tri-methoprim, and enrofloxacin in the Mekong Delta, Vietnam, PLoS One, 2015, 10, 1–24, DOI: 10.1371/journal.pone.0131855.

    Google Scholar 

  34. A. B. Caracciolo, E. Topp and P. Grenni, Pharmaceuticals in the environment: biodegradation and effects on natural microbial communities. A review, J. Pharm. Biomed. Anal., 2015, 106, 25–36, DOI: 10.1016/j.jpba.2014.11.040.

    Article  CAS  Google Scholar 

  35. E. Fernandez-Fontaina, I. B. Gomes, D. S. Aga, F. Omil, J. M. Lema and M. Carballa, Biotransformation of phar-maceuticals under nitrification, nitratation and hetero-trophic conditions, Sci. Total Environ., 2016, 541, 1439–1447, DOI: 10.1016/j.scitotenv.2015.10.010.

    Article  CAS  PubMed  Google Scholar 

  36. National Center for Biotechnology Information, U.S. National Library of Medicine. Norfloxacin. PubChem. (available from: https://pubchem.ncbi.nlm.nih.gov/com-pound/norfloxacin#section=Top).

  37. M. J. Benotti and B. J. Brownawell, Microbial degradation of pharmaceuticals in estuarine and coastal seawater, Environ. Pollut., 2009, 157, 994–1002, DOI: 10.1016/j.envpol.2008.10.009.

    Article  CAS  PubMed  Google Scholar 

  38. S. Willach, H. V. Lutze, K. Eckey, K. Loppenberg, M. Luling, J. Terhalle, J. B. Wolbert, M. A. Jochmann, U. Karst and T. C. Schmidt, Degradation of sulfamethoxa-zole using ozone and chlorine dioxide-compound-specific stable isotope analysis, transformation product analysis and mechanistic aspects, Water Res., 2017, 122, 280–289, DOI: 10.1016/j.watres.2017.06.001.

    Article  CAS  PubMed  Google Scholar 

  39. R. Mailler, J. Gasperi, Y. Coquet, A. Bulete, E. Vulliet, S. Deshayes, S. Zedek, C. Mirande-Bret, V. Eudes, A. Bressy, E. Caupos, R. Moilleron, G. Chebbo and V. Rocher, Removal of a wide range of emerging pollutants from wastewater treatment plant discharges by micro-grain activated carbon in fluidized bed as tertiary treat-ment at large pilot scale, Sci. Total Environ., 2016, 542, 983–996, DOI: 10.1016/J.SCITOTENV.2015.10.153.

    Article  CAS  PubMed  Google Scholar 

  40. I. S. Moreira, C. L. Amorim, A. R. Ribeiro, R. B. R. Mesquita, A. O. S. S. Rangel, M. C. M. van Loosdrecht, M. E. Tiritan and P. M. L. Castro, Removal of fluoxetine and its effects in the performance of an aerobic granular sludge sequential batch reactor, J. Hazard. Mater., 2015, 287, 93–101, DOI: 10.1016/j.jhazmat.2015.01.020.

    Article  CAS  PubMed  Google Scholar 

  41. K. D. Brown, J. Kulis, B. Thomson, T. H. Chapman and D. B. Mawhinney, Occurrence of antibiotics in hospital, residential, and dairy effluent, municipal wastewater, and the Rio Grande in New Mexico, Sci. Total Environ., 2006, 366, 772–783, DOI: 10.1016/j.scitotenv.2005.10.007.

    Article  CAS  PubMed  Google Scholar 

  42. K. H. Langford and K. V. Thomas, Determination of pharmaceutical compounds in hospital effluents and their contribution to wastewater treatment works, Environ. Int., 2009, 35, 766–770, DOI: 10.1016/j.envint.2009.02.007.

    Article  CAS  PubMed  Google Scholar 

  43. A. Zenker, M. R. Cicero, F. Prestinaci, P. Bottoni and M. Carere, Bioaccumulation and biomagnification poten-tial of pharmaceuticals with a focus to the aquatic environment, J. Environ. Manage., 2014, 133, 378–387, DOI: 10.1016/j.jenvman.2013.12.017.

    Article  CAS  PubMed  Google Scholar 

  44. W. C. Li, Occurrence, sources, and fate of pharmaceuticals in aquatic environment and soil, Environ. Pollut., 2014, 187, 193–201, DOI: 10.1016/j.envpol.2014.01.015.

    Article  CAS  PubMed  Google Scholar 

  45. M. Bourgin, E. Borowska, J. Helbing, J. Hollender, H. P. Kaiser, C. Kienle, C. S. McArdell, E. Simon and U. von Gunten, Effect of operational and water quality parameters on conventional ozonation and the advanced oxidation process O3/H2O2: kinetics of micropollutant abatement, transformation product and bromate for-mation in a surface water, Water Res., 2017, 122, 234–245, DOI: 10.1016/j.watres.2017.05.018.

    Article  CAS  PubMed  Google Scholar 

  46. L. H. M. L. M. Santos, M. Gros, S. Rodriguez-Mozaz, C. Delerue-Matos, A. Pena, D. Barcelo and M. C. B. S. M. Montenegro, Contribution of hospital effluents to the load of pharmaceuticals in urban waste-waters: identification of ecologically relevant pharmaceuti-cals, Sci. Total Environ., 2013, 461-462, 302–316, DOI: 10.1016/j.scitotenv.2013.04.077.

    Article  PubMed  CAS  Google Scholar 

  47. National Center for Biotechnology Information. U.S. National Library of Medicine. Ethinyl Estradiol. PubChem. (available from: http://pubs.acs.org/doi/10.1021/cg301479c).

  48. L. Feng, E. D. van Hullebusch, M. A. Rodrigo, G. Esposito and M. A. Oturan, Removal of residual anti-inflammatory and analgesic pharmaceuticals from aqueous systems by electrochemical advanced oxidation processes. A review, Chem. Eng. J., 2013, 228, 944–964, DOI: 10.1016/j.cej.2013.05.061.

    Article  CAS  Google Scholar 

  49. Q. Sui, X. Cao, S. Lu, W. Zhao, Z. Qiu and G. Yu, Occurrence, sources and fate of pharmaceuticals and per-sonal care products in the groundwater: a review, Emerg. Contam., 2015, 1, 14–24, DOI: 10.1016/j.emcon.2015.07.001.

    Article  Google Scholar 

  50. A. R. Ribeiro, O. C. Nunes, M. F. R. Pereira and A. M. T. Silva, An overview on the advanced oxidation pro-cesses applied for the treatment of water pollutants defined in the recently launched Directive 2013/39/EU, Environ. Int., 2015, 75, 33–51, DOI: 10.1016/j.envint.2014.10.027.

    Article  CAS  PubMed  Google Scholar 

  51. United States Environmental Protection Agency, Fact Sheet: Nonylphenols and Nonylphenol Ethoxylates. Assessing and Managing Chemicals under TSCA, 2017 (available from: https://www.epa.gov/assessing-and-managing-chemicals-under-tsca/fact-sheet-nonylphenols-and-nonylphenol-ethoxylates#avoid).

    Google Scholar 

  52. Centers for Disease Control and Prevention, Biomonitoring Summary-Octylphenol. National Biomonitoring Program, 2016 (available from: https://www.cdc.gov/biomonitoring/Octylphenol_BiomonitoringSummary.html).

  53. National Center for Biotechnology Information. U.S. National Library of Medicine. Anthracene. PubChem. (available from: http://www.tandfonline.com/doi/abs/10.1080/10587250210538).

  54. National Center for Biotechnology Information. U.S. National Library of Medicine. Benzene. PubChem. (avail-able from: https://pubchem.ncbi.nlm.nih.gov/compound/benzene#section=Top).

  55. National Center for Biotechnology Information. U.S. National Library of Medicine. Trifluralin. PubChem. (available from: https://pubchem.ncbi.nlm.nih.gov/com-pound/trifluralin#section=Top).

  56. Toxicology Data Network. U.S. National Library of Medicine. Fluoranthene. TOXNET. (available from: https://toxnet.nlm.nih.gov/cgi-bin/sis/search2/r?dbs+hsdb:@term+@rn+206-44-0).

  57. U.S. Environmental Protection Agency. National Center for Environmental Assessment. Naphthalene. Integrated Risk Information System. (available from: https://cfpub.epa.gov/ncea/iris/iris_documents/documents/subst/0436_summary.pdf).

  58. Agency for Toxic Substances & Disease Registry. Polycyclic Aromatic Hydrocarbons (PAHs). Toxic Substances Portal. (available from: https://www.atsdr.cdc.gov/substances/tox-substance.asp?toxid=25).

  59. U.S. National Library of Medicine. Polycyclic Aromatic Hydrocarbons (PAHs). Tox Town. Environmental health concerns and toxic chemicals where you live, work, and play. (available from: https://toxtown.nlm.nih.gov/text_version/chemicals.php?id=80).

  60. H. I. Abdel-Shafy and M. S. M. Mansour, A review on poly-cyclic aromatic hydrocarbons: source, environmental impact, effect on human health and remediation, Egypt J. Pet., 2016, 25, 107–123, DOI: 10.1016/J.EJPE.2015.03.011.

    Article  Google Scholar 

  61. National Center for Biotechnology Information. U.S. National Library of Medicine. 1,2-Dichloroethane. PubChem. (available from: http://www.degruyter.com/view/j/zkri.2004.219.issue-9/zkri.219.9.573.44041/zkri.219.9.573.44041.xml).

  62. Agency for Toxic Substances & Disease Registry. 1,2-Dichloroethane. Toxic Substances Portal (available from: https://www.atsdr.cdc.gov/substances/toxsubstance.asp?toxid=110).

  63. U. S. Environmental Protection Agency. Fact Sheet for Alachlor, 1998 (available from: https://www3.epa.gov/pesti-cides/chem_search/reg_actions/reregistration/fs_PC-090501_1-Dec-98.pdf).

    Google Scholar 

  64. National Center for Biotechnology Information. U.S. National Library of Medicine. Alachlor. PubChem (avail-able from: https://pubchem.ncbi.nlm.nih.gov/compound/alachlor#section=Top).

  65. Pesticide Management Education Program. Alachlor. Extention Toxicology Network (EXTOXNET) (available from: http://pmep.cce.cornell.edu/profiles/extoxnet/24d-captan/alachlor-ext.html).

  66. National Center for Biotechnology Information. U.S. National Library of Medicine. Dichloromethane. PubChem. (available from: https://pubchem.ncbi.nlm.nih.gov/compound/12222467).

  67. U.S. Environmental Protection Agency. Fact Sheet: Methylene Chloride or Dichloromethane. Assessing and Managing Chemicals under TSCA (available from: https://www.epa.gov/assessing-and-managing-chemicals-under-tsca/fact-sheet-methylene-chloride-or-dichloromethane-dcm-0#used).

  68. National Center for Biotechnology Information. U.S. National Library of Medicine. Endosulfan. PubChem (available from: https://pubchem.ncbi.nlm.nih.gov/com-pound/endosulfan#section=Top).

  69. Cornell University Cooperative Extension. Endosulfan. Extension Toxicology Network (available from: http://pmep.cce.cornell.edu/profiles/extoxnet/dienochlor-glypho-sate/endosulfan-ext.html).

  70. National Center for Biotechnology Information. U.S. National Library of Medicine. Hexachlorobenzene [Internet]. PubChem. Available from: https://pubchem.ncbi.nlm.nih.gov/compound/hexachlorobenzene#section=Top.

  71. International Program on Chemical Safety. Hexachlorobutadiene. Environmental Health Criteria. World Health Organization (available from: http://www.inchem.org/documents/ehc/ehc/ehc156.htm).

  72. U.S. Environmental Protection Agency. Pentachlorobenzene (available from: https://archive.epa.gov/epawaste/hazard/wastemin/web/pdf/pentchlb.pdf).

  73. National Center for Biotechnology Information. U.S. National Library of Medicine. Pentachlorobenzene. PubChem (available from: https://pubchem.ncbi.nlm.nih.gov/compound/pentachlorobenzene#section=Uses).

  74. Canadian POPs Trust Fund. Canadian International Development Agency. Pentachlorobenzene (PeCB). Persistent Organic Pollutants Toolkit (available from: http://www-esd.worldbank.org/popstoolkit/POPsToolkit/POPSTOOLKIT_COM/ABOUT/CHEMICAL/PECB.HTM).

  75. National Center for Biotechnology Information. U.S. National Library of Medicine. Pentachlorophenol. PubChem (available from: https://pubchem.ncbi.nlm.nih.gov/compound/pentachlorophenol#section=Top).

  76. National Center for Biotechnology Information. U.S. National Library of Medicine. Chloroform. PubChem (available from: https://pubchem.ncbi.nlm.nih.gov/com-pound/chloroform#section=Top).

  77. International Programme on Chemical Safety. Hexachlorocyclohexane (mixed isomers). Poisons Information Monograph (available from: http://www.inchem.org/documents/pims/chemical/pim257.htm#4.USE).

  78. Agency for Toxic Substances & Disease Registry. Hexachlorocyclohexane (HCH). Toxic Substances Portal (available from: https://www.atsdr.cdc.gov/substances/tox-substance.asp?toxid=138).

  79. National Center for Biotechnology Information. U.S: National Library of Medicine. Trichlorobenzene. PubChem (available from: https://pubchem.ncbi.nlm.nih.gov/compound/1_2_3-trichlorobenzene#section=Top).

  80. International Program on Chemical Safety. Brominated diphenyl ethers. Environmental Health Criteria. World Health Organization (available from: http://www.inchem.org/documents/ehc/ehc/ehc162.htm#PartNumber:2).

  81. M. A. Siddiqi, R. H. Laessig and K. D. Reed, Polybrominated diphenyl ethers (PBDEs): new pollutants-old diseases, Clin. Med. Res., 2003, 1, 281–290.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. E. Malaj, P. C. von der Ohe, M. Grote, R. Kühne, C. P. Mondy, P. Usseglio-Polatera, W. Brack and R. B. Schäfer, Organic chemicals jeopardize the health of freshwater ecosystems on the continental scale, Proc. Natl. Acad. Sci. U. S. A., 2014, 111, 9549–9554, DOI: 10.1073/pnas.1321082111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. European Chemicals Agency. An Agency of the European Union. Support document for identification of Alkanes, C10-13, Chloro as a substance of very high concern. Helsinki, 2008 (available from: https://echa.europa.eu/documents/10162/13638/svhc_supdoc_alkanes_c10_13_chloro_publication_3568_en.pdf/2edcfedb-ec53-4754-8598-e787a8ff7a58).

    Google Scholar 

  84. National Center for Biotechnology Information. U.S. National Library of Medicine. Cadmium. PubChem (available from: https://pubchem.ncbi.nlm.nih.gov/compound/cadmium#section=Uses).

  85. Agency for Toxic Substances & Disease Registry (ATSDR). Cadmium (Cd) Toxicity: What diseases are associated with chronic exposure to cadmium? Environmental Health and Medicine Education (available from: https://www.atsdr.cdc.gov/csem/csem.asp?csem=6&po=12).

  86. National Center for Biotechnology Information. U.S. National Library of Medicine. Lead. PubChem. (available from: https://pubchem.ncbi.nlm.nih.gov/compound/lead#section=Uses).

  87. National Center for Biotechnology Information. U.S. National Library of Medicine. Mercury. PubChem. (avail-able from: https://pubchem.ncbi.nlm.nih.gov/compound/mercury#section=Top).

  88. International Programme on Chemical Safety. Tributyltin and triphenyltin compounds. Integrated Risk Assessment, 2012 (available from: http://www.who.int/ipcs/publi-cations/en/ch_3c.pdf).

    Google Scholar 

  89. University of Tennessee. Formal Toxicity Summary for Nickel and nickel compounds. The Risk Assessment Information System (RAIS) (available from: https://rais.ornl.gov/tox/profiles/nickel_and_nickel_compounds_f_V1.html).

  90. Agency for Toxic Substances and Disease Registry. Chlorfenvinphos. Toxic Substances Portal (available from: https://www.atsdr.cdc.gov/substances/toxsubstance.asp?toxid=193).

  91. National Center for Biotechnology Information. U.S. National Library of Medicine. Chlorfenvinphos. PubChem. (available from: https://pubchem.ncbi.nlm.nih.gov/compound/Chlorfenvinphos#section=Top).

  92. Cornell University Cooperative Extension. Chlorpyrifos. Extension Toxicology Network, EXTOXNET (available from: http://pmep.cce.cornell.edu/profiles/extoxnet/car-baryl-dicrotophos/chlorpyrifos-ext.html).

  93. Agency for Toxic Substances and Disease Registry. Di(2-ethylhexyl)phthalate (DEHP). Toxic Substances Portal. (available from: https://www.atsdr.cdc.gov/substances/tox-substance.asp?toxid=65).

  94. National Center for Biotechnology Information. U.S. National Library of Medicine. DEHP. PubChem (available from: https://pubchem.ncbi.nlm.nih.gov/compound/dehp#section=Chemical-and-Physical-Properties).

  95. Cornel University Cooperative Extension. Diuron. EXTOXNET (available from: http://pmep.cce.cornell.edu/profiles/extoxnet/dienochlor-glyphosate/diuron-ext.html).

  96. National Center for Biotechnology Information. U.S. National Library of Medicine. Diuron, N'-(3,4-dichloro-phenyl)-N,N-dimethylurea. PubChem (available from: https://pubchem.ncbi.nlm.nih.gov/compound/diuron#-section=Top).

  97. National Center for Biotechnology Information. U.S. National Library of Medicine. Isoproturon. PubChem (available from: https://pubchem.ncbi.nlm.nih.gov/com-pound/isoproturon#section=EU-Pesticides-Data).

  98. University of Hertfordshire. Isoproturon. Pesticide Properties Database (available from: https://sitem.herts.ac.uk/aeru/ppdb/en/Reports/409.htm).

  99. National Center for Biotechnology Information. Atrazine. PubChem (available from: https://pubchem.ncbi.nlm.nih.gov/compound/atrazine#section=Top).

  100. T. B. Hayes, V. Khoury, A. Narayan, M. Nazir, A. Park, T. Brown, L. Adame, E. Chan, D. Buchholz, T. Stueve and S. Gallipeau, Atrazine induces complete feminization and chemical castration in male African clawed frogs Xenopus laevis), Proc. Natl. Acad. Sci. U. S. A., 2010, 107, 4612–4617, DOI: 10.1073/pnas.0909519107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. National Center for Biotechnology Information, U.S. National Library of Medicine, Simazine. PubChem. (Available from: https://pubchem.ncbi.nlm.nih.gov/com-pound/simazine#section=Top).

  102. Cornell University. Cooperative Extension. Simazine. Extension Toxicology Network, EXTOXNET (available from: http://pmep.cce.cornell.edu/profiles/extoxnet/pyre-thrins-ziram/simazine-ext.html).

  103. F. Y. Cakir and M. K. Stenstrom, Greenhouse gas pro-duction: a comparison between aerobic and anaerobic wastewater treatment technology, Water Res., 2005, 39, 4197–4203, DOI: 10.1016/j.watres.2005.07.042.

    Article  CAS  PubMed  Google Scholar 

  104. M. Bartolomeu, S. Reis, M. Fontes, M. G. P. M. S. Neves, M. A. F. Faustino and A. Almeida, Photodynamic action against wastewater microorganisms and chemical pollu-tants: an effective approach with low environmental impact, Water, 2017, 9, 630, DOI: 10.3390/w9090630.

    Article  CAS  Google Scholar 

  105. Biodegradation-Life of Science, ed. R. Chamy, F. Rosenkranz, InTech, 2013. (Available from: http://www.intechopen.com/books/biodegradation-life-of-science).

    Google Scholar 

  106. E. Corcoran, C. Nellemann, E. Baker, R. Bos, D. Osborn and H. Savelli, Sick Water? The central role of wastewater management in sustainable development. A rapid response assessment United Nations Environ Program UN-HABITAT, GRID-Arendal, 2010. (Available from: https://gridarendal-website-live.s3.amazonaws.com/production/documents/:s_document/208/original/SickWater_screen.pdf?1486721310).

    Google Scholar 

  107. Z. Liu, Y. Kanjo and S. Mizutani, Removal mechanisms for endocrine disrupting compounds (EDCs) in waste-water treatment—physical means, biodegradation, and chemical advanced oxidation: a review, Sci. Total Environ., 2009, 407, 731–748, DOI: 10.1016/j.scitotenv.2008.08.039.

    Article  CAS  PubMed  Google Scholar 

  108. Y. Song, F. Breider, J. Ma and U. von Gunten, Nitrate formation during ozonation as a surrogate parameter for abatement of micropollutants and the N-nitrosodimethylamine (NDMA) formation potential, Water Res., 2017, 122, 246–257, DOI: 10.1016/j.watres.2017.05.074.

    Article  CAS  PubMed  Google Scholar 

  109. H. Santoke, A. Y. C. Tong, S. P. Mezyk, K. M. Johnston, R. Braund, W. J. Cooper and B. M. Peake, UV photodegra-dation of enoxacin in water: kinetics and degradation pathways, J. Environ. Eng., 2015, 141, 10, DOI: 10.1061/(ASCE)EE.1943-7870.0000954.

    Article  CAS  Google Scholar 

  110. European Commission. Implementation of Council Directive 91/271/EEC of 21 May 1991 concerning urban waste water treatment, as amended by Commission Directive 98/15/EC of 27 February 1998-Environment - European Commission (available from: http://ec.europa.eu/environment/water/water-urbanwaste/implementation/implem_report_1/chap2.html#__4).

  111. Y. Men, S. Achermann, D. E. Helbling, D. R. Johnson and K. Fenner, Relative contribution of ammonia oxidizing bacteria and other members of nitrifying activated sludge communities to micropollutant biotransformation, Water Res., 2017, 109, 217–226, DOI: 10.1016/j.watres.2016.11.048.

    Article  CAS  PubMed  Google Scholar 

  112. H. Roh, N. Subramanya, F. Zhao, C. P. Yu, J. Sandt and K. H. Chu, Biodegradation potential of wastewater micro-pollutants by ammonia-oxidizing bacteria, Chemosphere, 2009, 77, 1084–1089, DOI: 10.1016/j.chemosphere.2009.08.049.

    Article  CAS  PubMed  Google Scholar 

  113. T. Urase and T. Kikuta, Separate estimation of adsorption and degradation of pharmaceutical substances and estro-gens in the activated sludge process, Water Res., 2005, 39, 1289–1300, DOI: 10.1016/j.watres.2005.01.015.

    Article  CAS  PubMed  Google Scholar 

  114. S. Snyder, C. Lue-Hing, J. Cotruvo, J. E. Drewes, A. Eaton, R. C. Pleus and D. Schlenk, Pharmaceuticals in the water environment, U. S. National Association of Clean Water Agencies (NACWA), Washington D.C., 2010 (available from: https://www.acs.org/content/dam/acsorg/policy/acsonthehill/briefings/pharmaceuticalsinwater/nacwa-paper.pdf).

    Google Scholar 

  115. S. S. Adav, D. J. Lee, K. Y. Show and J. H. Tay, Aerobic granular sludge: recent advances, Biotechnol. Adv., 2008, 26, 411–423, DOI: 10.1016/j.biotechadv.2008.05.002.

    Article  CAS  PubMed  Google Scholar 

  116. S. Tiglyene, A. Jaouad and L. Mandi, Treatment of tannery wastewater by infiltration percolation: chromium removal and speciation in soil, Environ. Technol., 2008, 29, 613–624, DOI: 10.1080/09593330801983888.

    Article  CAS  PubMed  Google Scholar 

  117. M. K. De Kreuk, J. J. Heijnen and M. C. M. van Loosdrecht, Simultaneous COD, nitrogen, and phosphate removal by aerobic granular sludge, Biotechnol. Bioeng., 2005, 90, 761–769, DOI: 10.1002/bit.20470.

    Article  PubMed  CAS  Google Scholar 

  118. Y. Shi, S. Xing, X. Wang and S. Wang, Changes of the reactor performance and the properties of granular sludge under tetracycline (TC) stress, Bioresour. Technol., 2013, 139, 170–175, DOI: 10.1016/j.biortech.2013.03.037.

    Article  CAS  PubMed  Google Scholar 

  119. C. L. Amorim, M. Alves, P. M. L. Castro and I. Henriques, Bacterial community dynamics within an aerobic granular sludge reactor treating wastewater loaded with pharma-ceuticals, Ecotoxicol. Environ. Saf, 2018, 147, 905–912, DOI: 10.1002/bit.20470.

    Article  CAS  PubMed  Google Scholar 

  120. P. Falás, A. Baillon-Dhumez, H. R. Andersen, A. Ledin and J. la Cour Jansen, Suspended biofilm carrier and activated sludge removal of acidic pharmaceuticals, Water Res., 2012, 46, 1167–1175, DOI: 10.1016/j.watres.2011.12.003.

    Article  PubMed  CAS  Google Scholar 

  121. P. Falás, H. R. Andersen, A. Ledin and J. la Cour Jansen, Occurrence and reduction of pharmaceuticals in the water phase at Swedish wastewater treatment plants, Water Sci. Technol., 2012, 66, 783, DOI: 10.2166/wst.2012.243.

    Article  PubMed  CAS  Google Scholar 

  122. M. Horsing, A. Ledin, R. Grabic, J. Fick, M. Tysklind, J. la Cour Jansen and H. R. Andersen, Determination of sorp-tion of seventy-five pharmaceuticals in sewage sludge, Water Res., 2011, 45, 4470–4482, DOI: 10.1016/j.watres.2011.05.033.

    Article  PubMed  CAS  Google Scholar 

  123. H. R. Andersen, M. Hansen, J. Kjolholt, F. Stuer-Lauridsen, T. Ternes and B. Halling-Sorensen, Assessment of the importance of sorption for steroid estrogens removal during activated sludge treatment, Chemosphere, 2005, 61, 139–146, DOI: 10.1016/j.chemosphere.2005.02.088.

    Article  CAS  PubMed  Google Scholar 

  124. B. Oram, Chlorination of Drinking Water. Water Research Center. 2014 (available from: https://www.water-research.net/index.php/water-treatment/tools/chlorination-of-water).

    Google Scholar 

  125. N. Ngwenya, E. J. Ncube, J. Parsons, Reviews of environ-mental contamination and toxicology, ed. D. M. Whitacre, Springer, New York, 2013. (available from: https://books.google.pt/books?id=ZPlf59Fqg8cC&pg=PA112&lpg=PA112&dq=The+need+for+water+disinfection+in+the+developing+world+is+undeniable.+Disinfection+drinking+water+is+critical+for+achieving+an+adequate+level+of+removal+or+inactivation+of+pathogenic+org).

  126. P. Amouzgar and B. Salamatinia, A short review on pres-ence of pharmaceuticals in water bodies and the potential of chitosan and chitosan derivatives for elimination of pharmaceuticals, Mol. Genet. Med., 2015, S4(001), DOI: 10.4172/1747-0862.S4-001.

    Google Scholar 

  127. National Health and Medical Research Council, Australian Drinking Water Guidelines 6, Canberra, 2017 (available from: https://www.nhmrc.gov.au/_files_nhmrc/file/publi-cations/nhmrc_adwg_6_version_3.4_final.pdf).

    Google Scholar 

  128. T. A. Ternes, M. Meisenheimer, D. McDowell, F. Sacher, H.-J. Brauch, B. Haist-Gulde, G. Preuss, U. Wilme and N. Zulei-Seibert, Removal of pharmaceuticals during drinking water treatment, Environ. Sci. Technol., 2002, 36, 3855–3863, DOI: 10.1021/es015757k.

    Article  CAS  PubMed  Google Scholar 

  129. S. Radi, C. E. Abiad, N. M. M. Moura, M. A. F. Faustino and M. G. P. M. S. Neves, New hybrid adsorbent based on porphyrin functionalized silica for heavy metals removal: synthesis, characterization, isotherms, kinetics and thermodynamics studies, J. Hazard. Mater., 2017, DOI: 10.1016/j.jhazmat.2017.10.058.

    Google Scholar 

  130. C. Bellona, J. E. Drewes, G. Oilker, J. Luna, G. Filteau and G. Amy, Comparing nanofiltration and reverse osmosis for drinking water augmentation, J. - Am. Water Works Assoc., 2008, 100, 102–116.

    Article  CAS  Google Scholar 

  131. C. Visvanathan, R. B. Aim and K. Parameshwaran, Membrane separation bioreactors for wastewater treat-ment, Crit. Rev. Environ. Sci. Technol., 2000, 30, 1–48, DOI: 10.1080/10643380091184165.

    Article  CAS  Google Scholar 

  132. J. Radjenovic, M. Matosic, I. Mijatovic, M. Petrovic and D. Barcelo, Membrane bioreactor (MBR) as an advanced wastewater treatment technology, Handb. Environ. Chem., 2008, 5, 37–101, DOI: 10.1007/698_5_093.

    Google Scholar 

  133. M. Nageeb, Adsorption technique for the removal of organic pollutants from water and wastewater, in Organic pollutants-monitoring, risk and treatment, InTech, 2013. (Available from: http://www.intechopen.com/books/organic-pollutants-monitoring-risk-and-treatment/adsorp-tion-technique-for-the-removal-of-organic-pollutants-from-water-and-wastewater).

    Google Scholar 

  134. A. Machulek, S. C. Oliveira, M. E. Osugi, V. S. Ferreira, F. H. Quina, R. F. Dantas, S. L. Oliveira, G. A. Casagrande, F. J. Anaissi, V. O. Silva, R. P. Cavalcante, F. Gozzi, D. D. Ramos, A. P. P. da Rosa, A. P. F. Santos, D. C. De Castro and J. A. Nogueira, Application of different advanced oxidation processes for the degradation of organic pollutants, in Organic pollutants-monitoring, risk and treatment, ed. M. Nageeb Rashed, InTech, 2013. (Available from: http://www.intechopen.com/books/organic-pollutants-monitoring-risk-and-treatment/application-of-different-advanced-oxidation-processes-for-the-degradation-of-organic-pollutants).

    Google Scholar 

  135. O. M. S. Filipe, N. Mota, S. A. O. Santos, M. R. M. Domingues, A. J. D. Silvestre, M. G. P. M. S. Neves, M. M. Q. Simoes and E. B. H. Santos, Identification and characterization of photo-degradation products of metoprolol in the presence of natural fulvic acid by HPLC-UV-MSn, J. Hazard. Mater., 2017, 323, 250–263, DOI: 10.1016/j.jhazmat.2016.05.072.

    Article  CAS  PubMed  Google Scholar 

  136. S. Malato, M. I. Maldonado, I. Oller and A. Zapata, Removal of pesticides from water and wastewater by solar-driven photocatalysis, in Emerging compounds removal from wastewater: natural and solar based treatments, ed. G. Lofrano, Springer, 2012, pp. 59–76. (Available from: http://link.springer.com/10.1007/978-94-007-3916-1).

    Chapter  Google Scholar 

  137. S. Malato, P. Fernandez-Ibanez, M. I. Maldonado, J. Blanco and W. Gernjak, Decontamination and disinfec-tion of water by solar photocatalysis: recent overview and trends, Catal. Today, 2009, 147, 1–59, DOI: 10.1016/J.CATTOD.2009.06.018.

    Article  CAS  Google Scholar 

  138. I. Ahmad, S. Ahmed, Z. Anwar, M. A. Sheraz and M. Sikorski, Photostability and photostabilization of drugs and drug products, Int. J. Photoenergy, 2016, 2016, 1–19, DOI: 10.1155/2016/8135608.

    Article  CAS  Google Scholar 

  139. A. Machulek, F. H. Quina, F. Gozzi, V. O. Silva, L. C. Friedrich and J. E. F. Moraes, Fundamental mechan-istic studies of the photo-Fenton reaction for the degra-dation of organic pollutants, in Organic pollutants ten years after the Stockholm convention-environmental and analytical update, InTech, 2012. (Available from: http://www.intechopen.com/books/organic-pollutants-ten-years-after-the-stockholm-convention-environmental-and-analyti-cal-update/fundamental-mechanistic-studies-of-the-photo-fenton-reaction-for-the-degradation-of-organic-pollutan).

    Google Scholar 

  140. M. A. Oturan and J.-J. Aaron, Advanced oxidation pro-cesses in water/wastewater treatment: principles and applications. A review, Crit. Rev. Environ. Sci. Technol., 2014, 44, 2577–2641, DOI: 10.1080/10643389.2013.829765.

    Article  CAS  Google Scholar 

  141. R. Bauer and H. Fallmann, The photo-Fenton oxidation— a cheap and efficient wastewater treatment method, Res. Chem. Intermed., 1997, 23, 341–354, DOI: 10.1163/156856797X00565.

    Article  CAS  Google Scholar 

  142. S. H. Bossmann, E. Oliveros, S. Gob, S. Siegwart, E. P. Dahlen, L. Payawan, M. Straub, M. Worner and A. M. Braun, New evidence against hydroxyl radicals as reactive intermediates in the thermal and photochemi-cally enhanced Fenton reactions, J. Phys. Chem. A, 1998, 102, 5542–5550, DOI: 10.1021/jp980129j.

    Article  CAS  Google Scholar 

  143. J. J. Pignatello, E. Oliveros and A. MacKay, Advanced oxi-dation processes for organic contaminant destruction based on the Fenton reaction and related chemistry, Crit. Rev. Environ. Sci. Technol., 2007, 36, 1–84, DOI: 10.1080/10643380500326564.

    Article  CAS  Google Scholar 

  144. C. von Sonntag, Advanced oxidation processes: mechanis-tic aspects, Water Sci. Technol., 2008, 58, 1015–1021, DOI: 10.2166/wst.2008.467.

    Article  CAS  Google Scholar 

  145. O. M. Alfano, M. I. Cabrera and A. E. Cassano, Photocatalytic reactions involving hydroxyl radical attack, J. Catal., 1997, 172, 370–379, DOI: 10.1006/jcat.1997.1858.

    Article  CAS  Google Scholar 

  146. A. Bernabeu, R. F. Vercher, L. Santos-Juanes, P. J. Simón, C. Lardín, M. A. Martínez, J. A. Vicente, R. González, C. Llosá, A. Arques and A. M. Amat, Solar photocatalysis as a tertiary treatment to remove emerging pollutants from wastewater treatment plant effluents, Catal. Today, 2011, 161, 235–240, DOI: 10.1016/J.CATT0D.2010.09.025.

    Article  CAS  Google Scholar 

  147. T. An, H. Yang, G. Li, W. Song, W. J. Cooper and X. Nie, Kinetics and mechanism of advanced oxidation processes (AOPs) in degradation of ciprofloxacin in water, Appl. Catal., B, 2010, 94, 288–294, DOI: 10.1016/J.APCATB.2009.12.002.

    Article  CAS  Google Scholar 

  148. T. A. Gad-Allah, M. E. M. Ali and M. I. Badawy, Photocatalytic oxidation of ciprofloxacin under simulated sunlight, J. Hazard. Mater., 2011, 186, 751–755, DOI: 10.1016/J.JHAZMAT.2010.11.066.

    Article  CAS  PubMed  Google Scholar 

  149. T. An, H. Yang, W. Song, G. Li, H. Luo and W. J. Cooper, Mechanistic considerations for the advanced oxidation treatment of fluoroquinolone pharmaceutical compounds using TiO2 heterogeneous catalysis, J. Phys. Chem. A, 2010, 114, 2569–2575, DOI: 10.1021/jp911349y.

    Article  CAS  PubMed  Google Scholar 

  150. H. Yang, L. Mei, P. Wang, J. Genereux, Y. Wang, B. Yi, C. Au, L. Dang and P. Feng, Photocatalytic degradation of norfloxacin on different TiO2-X polymorphs under visible light in water, RSC Adv., 2017, 7, 45721–45732, DOI: 10.1039/c7ra09022f.

    Article  CAS  Google Scholar 

  151. X. Zhang, R. Li, M. Jia, S. Wang, Y. Huang and C. Chen, Degradation of ciprofloxacin in aqueous bismuth oxybromide (BiOBr) suspensions under visible light irradiation: a direct hole oxidation pathway, Chem. Eng. J., 2015, 274, 290–297, DOI: 10.1016/J.CEJ.2015.03.077.

    Article  CAS  Google Scholar 

  152. F. Yuan, C. Hu, X. Hu, D. Wei, Y. Chen and J. Qu, Photodegradation and toxicity changes of antibiotics in UV and UV/H2O2 process, J. Hazard. Mater., 2011, 185, 1256–1263, DOI: 10.1016/j.jhazmat.2010.10.040.

    Article  CAS  PubMed  Google Scholar 

  153. M. Sayed, L. A. Shah, J. A. Khan, N. S. Shah, J. Nisar, H. M. Khan, P. Zhang and A. R. Khan, Efficient photocatalytic degradation of norfloxacin in aqueous media by hydrothermally synthesized immobilized TiO2/Ti films with xxposed {001} facets, J. Phys. Chem. A, 2016, 120, 9916–9931, DOI: 10.1021/acs.jpca.6b09719.

    Article  CAS  PubMed  Google Scholar 

  154. E. Hapeshi, A. Achilleos, M. I. Vasquez, C. Michael, N. P. Xekoukoulotakis, D. Mantzavinos and D. Kassinos, Drugs degrading photocatalytically: kinetics and mecha-nisms of ofloxacin and atenolol removal on titania sus-pensions, Water Res., 2010, 44, 1737–1746, DOI: 10.1016/J.WATRES.2009.11.044.

    Article  CAS  PubMed  Google Scholar 

  155. N. Miranda-García, M. I. Maldonado, J. M. Coronado and S. Malato, Degradation study of 15 emerging contami-nants at low concentration by immobilized TiO2 in a pilot plant, Catal. Today, 2010, 151, 107–113, DOI: 10.1016/J.CATTOD.2010.02.044.

    Article  CAS  Google Scholar 

  156. C. B. Ozkal, Z. Frontistis, M. Antonopoulou, I. Konstantinou, D. Mantzavinos and S. Meric, Removal of antibiotics in a parallel-plate thin-film-photocatalytic reactor: process modeling and evolution of transform-ation by-products and toxicity, J. Environ. Sci., 2017, 60, 114–122, DOI: 10.1016/j.jes.2016.12.025.

    Article  CAS  Google Scholar 

  157. N. P. Xekoukoulotakis, C. Drosou, C. Brebou, E. Chatzisymeon, E. Hapeshi, D. Fatta-Kassinos and D. Mantzavinos, Kinetics of UV-A/TiO2 photocatalytic degradation and mineralization of the antibiotic sulfa-methoxazole in aqueous matrices, Catal. Today, 2011, 161, 163–168, DOI: 10.1016/j.cattod.2010.09.027.

    Article  CAS  Google Scholar 

  158. A. Achilleos, E. Hapeshi, N. P. Xekoukoulotakis, D. Mantzavinos and D. Fatta-Kassinos, Factors affecting diclofenac decomposition in water by UV-A/TiO2 photoca-talysis, Chem. Eng. J., 2010, 161, 53–59, DOI: 10.1016/j.cej.2010.04.020.

    Article  CAS  Google Scholar 

  159. V. Bhatia, A. K. Ray and A. Dhir, Enhanced photocatalytic degradation of ofloxacin by co-doped titanium dioxide under solar irradiation, Sep. Purif. Technol., 2016, 161, 1–7, DOI: 10.1016/j.seppur.2016.01.028.

    Article  CAS  Google Scholar 

  160. N. Klamerth, L. Rizzo, S. Malato, M. I. Maldonado, A. Agüera and A. R. Fernández-Alba, Degradation of fifteen emerging contaminants at pg L-1 initial concentrations by mild solar photo-Fenton in MWTP effluents, Water Res., 2010, 44, 545–554, DOI: 10.1016/j.watres.2009.09.059.

    Article  CAS  PubMed  Google Scholar 

  161. A. G. Trovó, R. F. P. Nogueira, A. Agüera, A. R. Fernandez-Alba, C. Sirtori and S. Malato, Degradation of sulfa-methoxazole in water by solar photo-Fenton. Chemical and toxicological evaluation, Water Res., 2009, 43, 3922–3931, DOI: 10.1016/j.watres.2009.04.006.

    Article  PubMed  CAS  Google Scholar 

  162. C. Sirtori, A. Agüera, W. Gernjak and S. Malato, Effect of water-matrix composition on trimethoprim solar photode-gradation kinetics and pathways, Water Res., 2010, 44, 2735–2744, DOI: 10.1016/j.watres.2010.02.006.

    Article  CAS  PubMed  Google Scholar 

  163. C. Martínez, L. M. Canle, M. I. Fernández, J. A. Santaballa and J. Faria, Kinetics and mechanism of aqueous degra-dation of carbamazepine by heterogeneous photocatalysis using nanocrystalline TiO2, ZnO and multi-walled carbon nanotubes-anatase composites, Appl. Catal., B, 2011, 102, 563–571, DOI: 10.1016/j.apcatb.2010.12.039.

    Article  CAS  Google Scholar 

  164. K. Sornalingam, A. McDonagh and J. L. Zhou, Photodegradation of estrogenic endocrine disrupting ster-oidal hormones in aqueous systems: progress and future challenges, Sci. Total Environ., 2016, 550, 209–224, DOI: 10.1016/j.scitotenv.2016.01.086.

    Article  CAS  PubMed  Google Scholar 

  165. Z. Frontistis, M. Kouramanos, S. Moraitis, E. Chatzisymeon, E. Hapeshi, D. Fatta-Kassinos, N. P. Xekoukoulotakis and D. Mantzavinos, UV and simulated solar photodegradation of 17a-ethynylestradiol in secondary-treated wastewater by hydrogen peroxide or iron addition, Catal. Today, 2015, 252, 84–92, DOI: 10.1016/j.cattod.2014.10.012.

    Article  CAS  Google Scholar 

  166. W. Li, S. Lu, Z. Qiu and K. Lin, Photocatalysis of clofibric acid under solar light in summer and winter seasons, Ind. Eng. Chem. Res., 2011, 50, 5384–5393, DOI: 10.1021/ie1017145.

    Article  CAS  Google Scholar 

  167. C. L. Bianchi, B. Sacchi, S. Capelli, C. Pirola, G. Cerrato, S. Morandi and V. Capucci, Micro-sized TiO2 as photo-active catalyst coated on industrial porcelain grès tiles to photodegrade drugs in water, Environ. Sci. Pollut. Res., 2017, 1–6, DOI: 10.1007/s11356-017-9066-6.

    Google Scholar 

  168. N. Jallouli, K. Elghniji, O. Hentati, A. R. Ribeiro, A. M. T. Silva and M. Ksibi, UV and solar photo-degradation of naproxen: TiO2 catalyst effect, reaction kinetics, products identification and toxicity assessment, J. Hazard. Mater., 2016, 304, 329–336, DOI: 10.1016/j.jhazmat.2015.10.045.

    Article  CAS  PubMed  Google Scholar 

  169. D. Kanakaraju, C. A. Motti, B. D. Glass and M. Oelgemoller, TiO2 photocatalysis of naproxen: effect of the water matrix, anions and diclofenac on degradation rates, Chemosphere, 2015, 139, 579–588, DOI: 10.1016/j.chemosphere.2015.07.070.

    Article  CAS  PubMed  Google Scholar 

  170. Y. Tang, X. Shi, Y. Liu, L. Feng and L. Zhang, Degradation of clofibric acid in UV/chlorine disinfection process: kine-tics, reactive species contribution and pathways, R. Soc. Open Sci., 2018, 5, 171372, DOI: 10.1098/rsos.171372.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  171. M. Wainwright, T. Maisch, S. Nonell, K. Plaetzer, A. Almeida, G. P. Tegos and M. R. Hamblin, Photoantimicrobials—are we afraid of the light?, Lancet Infect. Dis., 2016, 3099, 1–7, DOI: 10.1016/S1473-3099(16)30268-7.

    Google Scholar 

  172. A. Almeida, E. Alves, C. Costa, A. Cunha, J. Tomé and A. C. Tomé, Photodynamic inactivation of pathogenic microorganisms in the environment: an efficient, cost-effective and sustainable technology, Sociedade Portuguesa de Microbiologia, 2012, 1, 1–6.

    Google Scholar 

  173. E. Alves, M. A. F. Faustino, M. G. P. M. S. Neves, À. Cunha, J. Tomé and A. Almeida, An insight on bacterial cellular targets of photodynamic inactivation, Future Med. Chem., 2014, 6, 141–164, DOI: 10.4155/fmc.13.211.

    Article  CAS  PubMed  Google Scholar 

  174. E. Alves, M. A. F. Faustino, M. G. P. M. S. Neves, À. Cunha, H. Nadais and A. Almeida, Potential applications of por-phyrins in photodynamic inactivation beyond the medical scope, J. Photochem. Photobiol., C, 2015, 22, 34–57, DOI: 10.1016/j.jphotochemrev.2014.09.003.

    Article  CAS  Google Scholar 

  175. M. Bartolomeu, S. Rocha, À. Cunha, M. G. P. M. S. Neves, M. A. F. Faustino and A. Almeida, Effect of photodynamic therapy on the virulence factors of Staphylococcus aureus, Front. Microbiol., 2016, 7, 267, DOI: 10.3389/fmicb.2016.00267.

    Article  PubMed  PubMed Central  Google Scholar 

  176. M. C. DeRosa and R. J. Crutchley, Photosensitized singlet oxygen and its applications, Coord. Chem. Rev., 2002, 233-234, 351–371, DOI: 10.1016/S0010-8545(02)00034-6.

    Article  Google Scholar 

  177. M. Gmurek, P. Kubat, J. Mosinger and J. S. Miller, Comparison of two photosensitizers A1(iii) phthalocyanine chloride tetrasulfonic acid and meso-tetrakis(4-sulfonato-phenyl)porphyrin in the photooxidation of n-butylpara-ben, J. Photochem. Photobiol., A, 2011, 223, 50–56, DOI: 10.1016/j.jphotochem.2011.07.015.

    Article  CAS  Google Scholar 

  178. M. Gmurek, M. Bizukojé, J. Mosinger and S. Ledakowicz, Application of photoactive electrospun nanofiber materials with immobilized meso-tetraphenylporphyrin for parabens photodegradation, Catal. Today, 2015, 240, 160–167, DOI: 10.1016/j.cattod.2014.06.015.

    Article  CAS  Google Scholar 

  179. M. Gmurek and S. Ledakowicz, A new approach to hetero-geneous kinetics of photosensitized oxidation, J. Photochem. Photobiol., A, 2017, 341, 51–56, DOI: 10.1016/j.jphotochem.2017.03.014.

    Article  CAS  Google Scholar 

  180. M. Gmurek, M. Foszpanczyk, M. Olak-Kucharczyk, D. Gryglik and S. Ledakowicz, Photosensitive chitosan for visible-light water pollutant degradation, Chem. Eng. J., 2017, 318, 240–246, DOI: 10.1016/j.cej.2016.06.125.

    Article  CAS  Google Scholar 

  181. Z. Zhang, M. Zhang, J. Deng, K. Deng, B. Zhang, K. Lv, J. Sun and L. Chen, Potocatalytic oxidative degradation of organic pollutant with molecular oxygen activated by a novel biomimetic catalyst ZnPz(dtn-COOH)4, Appl. Catal., B, 2013, 132-133, 90–97, DOI: 10.1016/j.apcatb.2012.11.027.

    Article  CAS  Google Scholar 

  182. H. Kim, W. Kim, Y. MacKeyev, G. S. Lee, H. J. Kim, T. Tachikawa, S. Hong, S. Lee, J. Kim, L. J. Wilson, T. Majima, P. J. J. Alvarez, W. Choi and J. Lee, Selective oxidative degradation of organic pollutants by singlet oxygen-mediated photosensitization: tin porphyrin versus C60 aminofullerene systems, Environ. Sci. Technol., 2012, 46, 9606–9613, DOI: 10.1021/es301775k.

    Article  CAS  PubMed  Google Scholar 

  183. R. Bonnett, M. A. Krysteva, I. G. Lalov and S. V. Artarsky, Water disinfection using photosensitizers immobilized on chitosan, Water Res., 2006, 40, 1269–1275, DOI: 10.1016/j.watres.2006.01.014.

    Article  CAS  PubMed  Google Scholar 

  184. Z. Xiong, Y. Xu, L. Zhu and J. Zhao, Photosensitized oxi-dation of substituted phenols on aluminum phthalo-cyanine-intercalated organoclay, Environ. Sci. Technol., 2005, 39, 651–657, DOI: 10.1021/es0487630.

    Article  CAS  PubMed  Google Scholar 

  185. Z. Zeng, J. Liu and H. H. G. Savenije, A simple approach to assess water scarcity integrating water quantity and quality, Ecol. Indic., 2013, 34, 441–449, DOI: 10.1016/j.ecolind.2013.06.012.

    Article  CAS  Google Scholar 

  186. M. Jamerson, K. Remmers, G. Cabral and F. Marciano-Cabral, Survey for the presence of Naegleria fowleri amebae in lake water used to cool reactors at a nuclear power generating plant, Parasitol. Res., 2009, 104, 969–978, DOI: 10.1007/s00436-008-1275-y.

    Article  PubMed  Google Scholar 

  187. T. Sato, M. Qadir, S. Yamamoto, T. Endo and A. Zahoor, Global, regional, and country level need for data on waste-water generation, treatment, and use, Agric. Water Manage., 2013, 130, 1–13, DOI: 10.1016/j.agwat.2013.08.007.

    Article  Google Scholar 

  188. M. Umar and H. A. Aziz, Photocatalytic degradation of organic pollutants in water, in Organic pollutants-moni-toring, risk and treatment, ed. M. Nageeb Rashed, InTech, 2013. (Available from: http://www.intechopen.com/books/organic-pollutants-monitoring-risk-and-treatment/photo-catalytic-degradation-of-organic-pollutants-in-water).

    Google Scholar 

  189. M. Q. Mesquita, J. C. J. M. D. S. Menezes, S. M. G. Pires, M. G. P. M. S. Neves, M. M. Q. Simoes, A. C. Tomé, J. A. S. Cavaleiro, A. Cunha, A. L. Daniel-da-Silva, A. Almeida and M. A. F. Faustino, Pyrrolidine-fused chlorin photosensitizer immobilized on solid supports for the photoinactivation of Gram negative bacteria, Dyes Pigm., 2014, 110, 123–133, DOI: 10.1016/j.dyepig.2014.04.025.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are thankful to the University of Aveiro, to FCT/MEC for the financial support to the Centre for Environmental and Marine Studies (CESAM) unit (project Pest-C/MAR/LA0017/2013) and the QOPNA research unit (FCT UID/QUI/ 00062/2013), through national funds, co-financed by the FEDER, within the PT2020 Partnership Agreement, and to the Portuguese NMR Network. M. B. is thankful to the Fundação para a Ciência e a Tecnologia (FCT) for her Ph.D. Grant (SFRH/BD/121645/2016).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. A. F. Faustino or A. Almeida.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bartolomeu, M., Neves, M.G.P.M.S., Faustino, M.A.F. et al. Wastewater chemical contaminants: remediation by advanced oxidation processes. Photochem Photobiol Sci 17, 1573–1598 (2018). https://doi.org/10.1039/c8pp00249e

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c8pp00249e

Navigation