Issue 12, 2019

Water flow in carbon nanotubes: the role of tube chirality

Abstract

We investigated the effects of the chirality of carbon nanotubes (CNTs) on water transport using molecular dynamics simulations. For the study, we considered CNTs with similar diameter and varying chiralities, obtained by altering the chiral indices (n,m) of the nanotubes. The tubes with an armchair (n = m) structure show the maximum streaming velocity, flux, flow rate enhancement and slip length, whereas the corresponding values are lower for chiral (nm) tubes, and are the lowest in zigzag (m = 0) CNTs. The difference in flow rates with varying tube structures can be primarily attributed to the alteration in potential energy landscape experienced by the water molecules, leading to changes in the friction coefficient at the fluid–solid interface. The water molecules experienced the least resistance to flow in an armchair tube, while the force exerted by the CNT surface on the water molecules increased monotonically with the change in the CNT type to chiral and then to zigzag. The chirality effects on water transport are, however, found to decrease with an increase in tube diameter. Furthermore, an analysis of the influence of the CNT type on ion (Na+ or Cl) transport in water-filled CNTs showed the interaction energy of ions with water to be much higher than that with the CNT surface, demonstrating minimal dependence of ion transport on the chiral structure. Hence, the tube chirality should be considered an ineludible factor in controlling the water transport through CNTs and in the designing of novel devices in nanotechnology.

Graphical abstract: Water flow in carbon nanotubes: the role of tube chirality

Supplementary files

Article information

Article type
Paper
Submitted
23 Jan 2019
Accepted
26 Feb 2019
First published
26 Feb 2019

Phys. Chem. Chem. Phys., 2019,21, 6566-6573

Water flow in carbon nanotubes: the role of tube chirality

A. Sam, V. P. K. and S. P. Sathian, Phys. Chem. Chem. Phys., 2019, 21, 6566 DOI: 10.1039/C9CP00429G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements