Skip to main content
Log in

Photoelimination of nitrogen from adamantane and pentacycloundecane (PCU) diazirines: a spectroscopic study and supramolecular control †

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Photochemical reactivity of pentacycloundecane (PCU) and adamantane diazirines was investigated by preparative irradiation in different solvents, laser flash photolysis (LFP) and quantum chemical computations. In addition, formation of inclusion complexes for diazirines with cucurbit[7]uril, β- and γ-cyclodextrin (β- and γ-CD) was investigated by 1H NMR spectroscopy, isothermal microcalorimetry and circular dichroism spectroscopy, followed by the investigation of photochemical reactivity of the formed complexes. Diazirines undergo efficient photochemical elimination of nitrogen (ΦR > 0.5) and deliver the corresponding singlet carbenes. Singlet carbenes react in intra- and intermolecular reactions and we found a rare singlet carbene pathway in CH3OH involving protonation and formation of a carbocation, detected due to the specific rearrangement of the pentacycloundecane skeleton. Singlet diazirines undergo intersystem crossing and deliver triplet carbenes that react with oxygen to form ketones which were isolated after irradiation. Our main finding is that the formation of diazirine inclusion complexes with β-CD and γ-CD changes the relative ratio of singlet vs. triplet pathways, with singlet carbene products being dominant from the chemistry of the irradiated complexes. Our combined theoretical and experimental studies provide new insights into the supramolecular control of carbene reactivity which has possible applications for the control of product distribution by solvent effects and the choice of constrained media.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Notes and references

  1. J. Hine, Carbon Dichloride as an Intermediate in the Basic Hydrolysis of Chloroform. A Mechanism for Substitution Reactions at a Saturated Carbon Atom, J. Am. Chem. Soc., 1950, 72, 2438–2445.

    Article  CAS  Google Scholar 

  2. W. von E. Doering, R. G. Buttery, R. G. Laughlin and N. Chaudhury, Indiscriminate Reaction of Methylene with the Carbon-Hydrogen Bond, J. Am. Chem. Soc., 1956, 78, 3224–3224.

    Article  CAS  Google Scholar 

  3. R. A. Moss and M. P. Doyle, Contemporary Carbene Chemistry, Wiley, 2014.

  4. M. Jones Jr. and R. A. Moss, Singlet Carbenes, in, Reactive Intermediate Chemistry, ed. R. A. Moss, M. S. Platz and M. Jones Jr, Wiley, Hoboken, 2004 and references cited therein.

  5. H. Tomioka, Triplet Carbenes, in, Reactive Intermediate Chemistry, ed. R. A. Moss, M. S. Platz and M. Jones Jr, Wiley, Hoboken, 2004 and references cited therein.

  6. D. Bourissou, O. Guerret, F. P. Gabbaï and G. Bertrand, Stable Carbenes, Chem. Rev., 2000, 100, 39–91.

    Article  CAS  PubMed  Google Scholar 

  7. P. de Frémont, N. Marion and S. P. Nolan, Carbenes: Synthesis, Properties, and Organometallic Chemistry, Coord. Chem. Rev., 2009, 253, 862–892.

    Article  CAS  Google Scholar 

  8. M. N. Hopkinson, C. Richter, M. Schedler and F. Glorius, An Overview of N-Heterocyclic Carbenes, Nature, 2014, 510, 485–496.

    Article  CAS  PubMed  Google Scholar 

  9. R. A. Moss, Adventures in Reactive Intermediate Chemistry: A Perspective and Retrospective, J. Org. Chem., 2017, 82, 2307–2318.

  10. K. Mlinarić-Majerski, Molecules with Inverted Carbon Atoms, in, Strained Hydrocarbons, ed. H. Dodziuk, Wiley-VCH, Weinheim, 2009 and references cited therein.

  11. K. Mlinarić-Majerski and Z. Majerski, 2,4-Methano-2,4-dehydroadamantane. A [3.1.1]propellane, J. Am. Chem. Soc., 1980, 102, 1418–1419.

    Article  Google Scholar 

  12. K. Mlinarić-Majerski and Z. Majerski, The Bond Between Inverted Carbon Atoms. Synthesis and Chemistry of 2,4-Methano-2,4-didehydroadamantane: a Highly Reactive [3.1.1]propellane, J. Am. Chem. Soc., 1983, 105, 7389–7395.

    Article  Google Scholar 

  13. T. C. Celius and J. P. Toscano, The Photochemistry of Diazirines, in, CRC Handbook of Photochemistry and Photobiology, ed. W. Horspool and F. Lenci, CRC Press, Boca Raton, 2nd edn, 2004.

  14. A.-M. A. Abdel-Wahab, S. A. Ahmed and H. Dürr, Carbene Formation by Extrusion of Nitrogen, in, CRC Handbook of Photochemistry and Photobiology, ed. W. Horspool and F. Lenci, CRC Press, Boca Raton, 2nd edn, 2004.

  15. R. A. Moss and M. J. Chang, Intermolecular Chemistry of a Dialkylcarbene: Adamantanylidene, Tetrahedron Lett., 1981, 22, 3749–3752.

    Article  CAS  Google Scholar 

  16. G. V. Shustov and M. T. H. Liu, On the Possibility of Conversion of Strained Bridgehead Alkenes into Carbenes via 1,2 Hydrogen and 1,2 Carbon Migrations. A Theoretical Study of the Rearrangements in the Adamantene and Protoadamantene Systems, Can. J. Chem., 1998, 76, 851–861.

    Article  CAS  Google Scholar 

  17. M. M. Bobek and U. H. Brinker, Intra- and Intermolecular Diastereoselectivity of 5-Hydroxy-2-adamantylidene, J. Am. Chem. Soc., 2000, 122, 7430–7431.

    Article  CAS  Google Scholar 

  18. W. Knoll, M. M. Bobek, H. Kalchhauser, M. G. Rosenberg and U. H. Brinker, Reversal of Diastereoselectivities in Intra- and Intermolecular Reactions of 2-Adamantanylidenes Primarily Caused by Electron-Donating and Electron- Withdrawing Substituents on C5, Org. Lett., 2003, 5, 2943–2946.

    Article  CAS  PubMed  Google Scholar 

  19. W. Knoll, D. Kaneno, M. M. Bobek, L. Brecker, M. G. Rosenberg, S. Tomoda and U. H. Brinker, Intra- and Intermolecular Reaction Selectivities of γ-Substituted Adamantanylidenes, J. Org. Chem., 2012, 77, 1340–1360.

    Article  CAS  PubMed  Google Scholar 

  20. R. A. Moss and K. Krogh-Jespersen, The Nucleophilicity of Adamantanylidene: a Hammett Study, Tetrahedron Lett., 2014, 55, 4278–4280.

    Article  CAS  Google Scholar 

  21. R. A. Moss, L. Wang and K. Krogh-Jespersen, The Nucleophilicity of a Dialkylcarbene: Unusual Activation Parameters for Additions of Adamantanylidene to Simple Alkenes, J. Am. Chem. Soc., 2014, 136, 4885–4888.

    Article  CAS  PubMed  Google Scholar 

  22. R. Bonneau and M. T. H. Liu, Quantum Yield of Formation of Diazo Compounds from the Photolysis of Diazirines, J. Am. Chem. Soc., 1996, 118, 7229–7230.

    Article  CAS  Google Scholar 

  23. D. A. Modarelli, S. Morgan and M. S. Platz, Carbene Formation, Hydrogen Migration, and Fluorescence in the Excited States of Dialkyldiazirines, J. Am. Chem. Soc., 1992, 114, 7034–7041.

    Article  CAS  Google Scholar 

  24. J. S. Buterbaugh, J. P. Toscano, W. L. Weaver, J. R. Gord, C. M. Hadad, T. Gustafson and M. S. Platz, Fluorescence Lifetime Measurements and Spectral Analysis of Adamantyldiazirine, J. Am. Chem. Soc., 1997, 119, 3580–3591.

    Article  CAS  Google Scholar 

  25. S. Morgan, J. E. Jackson and M. S. Platz, Laser Flash Photolysis Study of Adamantanylidene, J. Am. Chem. Soc., 1991, 113, 2782–2783.

    Article  CAS  Google Scholar 

  26. J. P. Pezacki, J. Warkentin, P. D. Wood, J. Lusztyk, T. Yuzawa, A. D. Gudmundsdottir, S. Morgan and M. S. Platz, Laser Flash Photolysis of 2-Adamantane-2,3′- [3H]-diazirine: a Reinvestigation, J. Photochem. Photobiol., A, 1998, 116, 1–7.

    Article  CAS  Google Scholar 

  27. R. Bonneau, B. Hellrung, M. T. H. Liu and J. Wirz, Adamantylidene Revisited: Flash Photolysis of Adamantanediazirine, J. Photochem. Photobiol., A, 1998, 116, 9–19.

    Article  CAS  Google Scholar 

  28. V. Chalil Rojisha, K. Nijesh, S. De and P. Parameswaran, Singlet 2-Adamantylidene - an Ambiphilic Foiled Carbene Stabilized by Hyperconjugation, Chem. Commun., 2013, 49, 8465–8467.

    Article  CAS  Google Scholar 

  29. K. Nijesh, V. Chalil Rojisha, S. De and P. Parameswaran, 2-Adamantylidene and its Heavier Analogues: Hyperconjugation versus Lone Pair Stability and Electrophilicity versus Nucleophilicity, J. Chem. Soc., Dalton Trans., 2015, 4693–4706.

  30. H. Cang, R. A. Moss and K. Krogh-Jespersen, Nucleophilic Intermolecular Chemistry and Reactivity of Dimethylcarbene, J. Am. Chem. Soc., 2015, 137, 2730–2737.

    Article  CAS  PubMed  Google Scholar 

  31. T. Bally, S. Matzinger, L. Truttmann, M. S. Platz and S. Morgan, Matrix Spectroscopy of 2-Adamantylidene, a Dialkylcarbene with Singlet Ground State, Angew. Chem., Int. Ed. Engl., 1994, 33, 1964–1966.

    Article  Google Scholar 

  32. D. Krois and U. H. Brinker, Induced Circular Dichroism and UV-Vis Absorption Spectroscopy of Cyclodextrin Inclusion Complexes: Structural Elucidation of Supramolecular Azi-adamantane (Spiro[adamantane-2,3′-diazirine]), J. Am. Chem. Soc., 1998, 120, 11627–11632.

    Article  CAS  Google Scholar 

  33. R. Kupfer, M. D. Poliks and U. H. Brinker, Carbenes in Constrained Systems. 2. First Carbene Reactions within Zeolites-Solid State Photolysis of Adamantane-2-spiro-3′-diazirine, J. Am. Chem. Soc., 1994, 116, 7393–7398.

    Article  CAS  Google Scholar 

  34. S. Gupta, R. Choudhury, D. Krois, U. H. Brinker and V. Ramamurthy, Cucurbituril Adamantanediazirine Complexes and Consequential Carbene Chemistry, J. Org. Chem., 2012, 77, 5155–5160.

    Article  CAS  PubMed  Google Scholar 

  35. A. P. Marchand, B. E. Arney Jr., R. Gilardi and J. L. Flippen-Anderson, Lewis Acid Promoted Reaction of Pentacyclo[5.4.0.02,6.03,10.05,9]undecane-8,11-dione with Ethyl Diazoacetate: a Synthetic Entry into the Pentacyclo [6.5.0.04,12.05,10.09,13]tridecane Ring System, J. Org. Chem., 1987, 52, 3455–3457.

    Article  CAS  Google Scholar 

  36. A. P. Marchand, P. Annapurna, S. P. Reddy, W. H. Watson and A. Nagl, Lewis Acid Promoted Reactions of Substituted Pentacyclo[5.4.0.02,6.03,10.05,9]undecane-8,11-diones with Ethyl Diazoacetate, J. Org. Chem., 1989, 54, 187–193.

    Article  CAS  Google Scholar 

  37. S. Kotha, S. R. Cheekatla and B. Mandal, Synthesis and Rearrangement of Cage [4.3.2]Propellanes that Contain a Spiro Linkage, Eur, J. Org. Chem., 2017, 4277–4282.

  38. W. Krimse and T. Meinert, Carbenes and the O–H Bond: Norbornenylidenes, J. Chem. Soc., Chem. Commun., 1994, 1065–1066.

  39. S. D. Isaev, A. G. Yurchenko, F. N. Stepanov, G. G. Kolyada, S. S. Novikov and N. F. Karpenko, Synthesis and chemical reactions of adamantane-2-spiro-3′-diazirine, Zh. Org. Khim., 1973, 9, 724–727.

    CAS  Google Scholar 

  40. A. P. Marchand, K. A. Kumar, K. Mlinarić-Majerski and J. Veljković, Intermolecular vs. Intramolecular Carbene Reactions of a Cage-Functionalized Cyclopentylcarbene, Tetrahedron, 1998, 54, 15105–15112.

    Article  CAS  Google Scholar 

  41. J. Olmsted III, Calorimetric Determinations of Absolute Fluorescence Quantum Yields, J. Phys. Chem., 1979, 83, 2581–2584.

  42. B. Sellner, G. Zifferer, A. Kornherr, D. Krois and U. H. Brinker, Molecular Dynamics Simulations of β-Cyclodextrin−Aziadamantane Complexes in Water, J. Phys. Chem. B, 2008, 112, 710–714.

    Article  CAS  PubMed  Google Scholar 

  43. G. Zifferrer, A. Kornherr and U. H. Brinker, Molecular Dynamics Simulation of Configurational Properties of Complexes between β-Cyclodextrin and 2,6-Diaziadamantane in Water, Mol. Simul., 2008, 34, 1177–1183.

    Article  CAS  Google Scholar 

  44. U. H. Brinker, R. Buchkremer, M. Kolodziejczyk, R. Kupfer, M. Rosenberg, M. D. Poliks, M. Orlando and M. L. Gross, Carbenes in Constrained Systems I: 1,3 C-H Insertion Reaction of Adamantylidene within the β-Cyclodextrin Cavity, Angew. Chem., Int. Ed. Engl., 1993, 32, 1344–1345.

    Article  Google Scholar 

  45. D. Krois, L. Brecker, A. Werner and U. H. Brinker, Carbene Rearrangements, 60. Supramolecular Structure-Reactivity Relationships: Photolysis of a Series of Aziadamantane@Cyclodextrin Inclusion Complexes in the Solid State, Adv. Synth. Catal., 2004, 346, 1367–1374.

    Article  CAS  Google Scholar 

  46. J. Wang, G. Burdzinski, T. L. Gustafson and M. S. Platz, Ultrafast Study of p-Biphenylyldiazomethane and p-Biphenylylcarbene, J. Org. Chem., 2006, 71, 6221–6228.

    Article  CAS  PubMed  Google Scholar 

  47. J. Knorr, P. Sokkar, S. Schott, P. Costa, W. Thiel, W. Sander, E. Sanchez-Garcia and P. Nuenberger, Competitive Solvent-Molecule Interactions Govern Primary Processes of Diphenylcarbene in Solvent Mixtures, Nat. Commun., 2016, 7, 12968.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. J. N. Johnston, H. Muchalski and T. L. Troyer, To Protonate or Alkylate? Stereoselective Brønsted Acid Catalysis of CC Bond Formation Using Diazoalkanes, Angew. Chem., Int. Ed., 2010, 49, 2290–2298.

    Article  CAS  Google Scholar 

  49. H. J. Kuhn, S. E. Braslavsky and R. Schmidt, Chemical Actinometry (IUPAC Technical Report), Pure Appl, Chem., 2004, 76, 2105–2146.

    CAS  Google Scholar 

  50. Y. Liao and C. Bohne, Alcohol Effect on Equilibrium Constants and Dissociation Dynamics of Xanthone-Cyclodextrin Complexes, J. Phys. Chem., 1996, 100, 734–743.

    Article  CAS  Google Scholar 

  51. M. Montalti, A. Credi, L. Prodi and M. T. Gandolfi, in, Handbook of Photochemistry, CRC Taylor and Francis, Boca Raton, 2006.

  52. D. Gerbig and D. Ley, Computational Methods for Contemporary Carbene Chemistry, Wiley Interdiscip. Rev.: Comput. Mol. Sci., 2013, 3, 242–272.

    CAS  Google Scholar 

  53. C. Adamo and D. Jacquemin, The Calculations of Excited-State Properties with Time-Dependent Density Functional Theory, Chem. Soc. Rev., 2013, 42, 845–856.

    CAS  PubMed  Google Scholar 

  54. M. A. El-Sayed, The Radiationless Processes Involving Change of Multiplicity in the Diazenes, J. Chem. Phys., 1962, 36, 573–574.

  55. Z. Zhu, T. Bally, L. L. Stracener and R. J. McMahon, Reversible Interconversion Between Singlet and Triplet 2-Naphthyl(carbomethoxy)carbene, J. Am. Chem. Soc., 1999, 121, 2863–2874.

    Article  CAS  Google Scholar 

  56. Y. Wang, T. Yuzawa, H. Hamaguchi and J. P. Toscano, Time-Resolved IR Studies of 2-Naphthyl(carbomethoxy) carbene: Reactivity and Direct Experimental Estimate of the Singlet/Triplet Energy Gap, J. Am. Chem. Soc., 1999, 121, 2875–2882.

    Article  CAS  Google Scholar 

  57. J.-L. Wang, I. Likhotvorik and M. S. Platz, A Laser Flash Photolysis Study of 2-Naphthyl(carbomethoxy)carbene, J. Am. Chem. Soc., 1999, 121, 2883–2890.

    Article  CAS  Google Scholar 

  58. A. L. Buchachenko and V. L. Berdinsky, Electron Spin Catalysis, Chem. Rev., 2002, 102, 603–612.

    Article  CAS  PubMed  Google Scholar 

  59. R. D. Small Jr. and J. C. Scaiano, Differentiation of Excited-State and Biradical Processes. Photochemistry of Phenyl Alkyl Ketones in the Presence of Oxygen, J. Am. Chem. Soc., 1978, 100, 4512–4519.

    Article  CAS  Google Scholar 

  60. R. C. Cookson, E. Crundwell, R. R. Hill and J. Hudec, Photochemical Cyclisation of Diels-Alder Adducts, J. Chem. Soc., 1964, 3062–3075.

  61. A. P. Marchand and R. W. Allen, Improved Synthesis of Pentacyclo[5.4.0.02,6.03,10.05,9]undecane, J. Org. Chem., 1974, 39, 1596–1596.

    Article  CAS  Google Scholar 

  62. T. G. Dekker and D. W. Oliver, Synthesis of (D3)-trishomocuban-4-ol via Carbenium Ion Rearrangement of Pentacyclo [5.4.0.02,6.03,10.05,9] undecan-8-ol, S. Afr. J. Chem., 1979, 32, 45–48.

    CAS  Google Scholar 

  63. S. Yi and A. E. Kaifer, Determination of the Purity of Cucurbit[n]uril (n = 7, 8) Host Samples, J. Org. Chem., 2011, 76, 10275–10278.

    Article  CAS  PubMed  Google Scholar 

  64. Đ. Škalamera, K. Mlinarić-Majerski, I. Martin-Kleiner, M. Kralj, P. Wan and N. Basarić, Near-Visible Light Generation of a Quinone Methide from 3-Hydroxymethyl-2-anthrol, J. Org. Chem., 2014, 79, 4390–4397.

    Article  PubMed  CAS  Google Scholar 

  65. T. C. S. Pace and C. Bohne, Temperature Effects on Xanthone-β-Cyclodextrin Binding Dynamics, Can. J. Chem., 2011, 89, 395–401.

    Article  CAS  Google Scholar 

  66. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, et al., Gaussian 09, Gaussian, Inc., Wallingford, CT, USA, 2013.

  67. R. Peverati and D. G. Truhlar, Screened-Exchange Density Functionals with Broad Accuracy for Chemistry and Solid-State Physics, Phys. Chem. Chem. Phys., 2012, 14, 16187–16191.

    Article  CAS  PubMed  Google Scholar 

  68. V. Barone and M. Cossi, Quantum Calculation of Molecular Energies and Energy Gradients in Solution by a Conductor Solvent Model, J. Phys. Chem. A, 1998, 102, 1995–2001.

    Article  CAS  Google Scholar 

  69. M. Cossi, N. Rega, G. Scalmani and V. Barone, Energies, Structures, and Electronic Properties of Molecules in Solution with the C-PCM Solvation Model, J. Comput. Chem., 2003, 24, 669–681.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikola Basarić.

Additional information

Electronic supplementary information (ESI) available: Selected experimental procedures, UV-vis and fluorescence spectra of 1 and 2, ITC, CD and 1H NMR titrations, LFP and computational data, and 1H and 13C NMR spectra of prepared compounds. See DOI: 10.1039/c9pp00124g

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Šumanovac, T., Alešković, M., Šekutor, M. et al. Photoelimination of nitrogen from adamantane and pentacycloundecane (PCU) diazirines: a spectroscopic study and supramolecular control †. Photochem Photobiol Sci 18, 1806–1822 (2019). https://doi.org/10.1039/c9pp00124g

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c9pp00124g

Navigation