Skip to main content
Log in

One- and two-photon solvatochromism of the fluorescent dye Nile Red and its CF3, F and Br-substituted analogues

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

The solvatochromic fluorophore Nile Red, 9-diethylamino-5H-benzo[a]phenoxazine-5-one, is one of the most commonly used stains to enhance contrast of lipid-rich areas of microscopic biosamples. Quite surprisingly, relatively little is known about the spectrally-resolved two-photon absorption (2PA) properties of this dye despite its promising features for two-photon microscopy of biological matter. For this reason, the two-photon solvatochromism of Nile Red still remains an uncharted territory as well. Also, no study has yet reported on how electron-withdrawing substituents attached to the Nile Red backbone affect its solvatochromic properties and two-photon brightness. In this paper, we demonstrate how solvent polarity nfluences the one- and two-photon absorption spectra of Nile Red as well as its fluorescence parameters, and we present new analogues that contain −CF3, −F and −Br substituents on its eastern side. Two-photon excited fluorescence experiments in a broad spectral range (780–1240 nm) and electronic structure calculations show that both the nature and location of the substituent have particular influence on the strength of 2PA, peaking in all cases at approx. 860 and 1050 nm. 2PA cross sections are higher at 1050 nm than at 860 nm, which suggests that Nile Red and its analogues are best suited for two-photon imaging employing excitation in the NIR-II optical transparency window of biological tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes and references

  1. V. Martinez and M. Henary, Nile red and Nile blue: applications and syntheses of structural analogues, Chem. – Eur. J., 2016, 22, 13764–13782.

    Article  CAS  PubMed  Google Scholar 

  2. P. Greenspan, E. P. Mayer and S. D. Fowler, Nile red: a selective fluorescent stain for intracellular lipid droplets, J. Cell Biol., 1985, 100, 965–973.

    Article  CAS  PubMed  Google Scholar 

  3. G. S. Alemán-Nava, S. P. Cuellar-Bermudez, M. Cuaresma, R. Bosma, K. Muylaert, B. E. Ritmann and R. Parra, How to use Nile Red, a selective fluorescent stain for microalgal neutral lipids, J. Microbiol. Methods, 2016, 128, 74–79.

    Article  PubMed  CAS  Google Scholar 

  4. K. Natunen, J. Seppälä, D. Schwenk, H. Rischer, K. Spilling and T. Tamminen, Nile Red staining of phytoplankton neutral lipids: species-specific fluorescence kinetics in various solvents, J. Appl. Phycol., 2015, 27, 1161–1168.

    Article  CAS  PubMed  Google Scholar 

  5. J. Rumin, H. Bonnefond, B. Saint-Jean, C. Rouxel, A. Sciandra, O. Bernard, J.-P. Cadoret and G. Bougaran, The use of fluorescent Nile red and BODIPY for lipid measurement in microalgae, Biotechnol. Biofuels, 2015, 8, 42.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. D. L. Sackett and J. Wolff, Nile red as a polarity-sensitive fluorescent probe of hydrophobic protein surfaces, Anal. Biochem., 1987, 167, 228–234.

    Article  CAS  PubMed  Google Scholar 

  7. T. Maes, R. Jessop, N. Wellner, K. Haupt and A. G. Mayes, A rapid-screening approach to detect and quantify microplastics based on fluorescent tagging with Nile Red, Sci. Rep., 2017, 7, 44501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. S. Mukherjee, H. Raghuraman and A. Chattopadhyay, Membrane localization and dynamics of Nile Red: Effect of cholesterol, Biochim. Biophys. Acta, Biomembr., 2007, 1768, 59–66.

    Article  CAS  Google Scholar 

  9. Z. Darwich, A. S. Klymchenko, D. Dujardin and Y. Mély, Imaging lipid order changes in endosome membranes of live cells by using a Nile Red-based membrane probe, RSC Adv., 2014, 4, 8481–8488.

    Article  CAS  Google Scholar 

  10. R. Möhlau and K. Uhlmann, Zur Kenntniss der Chinazin–und Oxazinfarbstoffe, Justus Liebigs Ann. Chem., 1896, 289, 90–130.

    Article  Google Scholar 

  11. S. Prioli, P. Reinholdt, M. Hornum and J. Kongsted, Rational Design of Nile Red Analogs for Sensing in Membranes, J. Phys. Chem. B, 2019, 123, 10424–10432.

    Article  CAS  PubMed  Google Scholar 

  12. D. G. Yablon and A. M. Schilowitz, Solvatochromism of Nile Red in nonpolar solvents, Appl. Spectrosc., 2004, 58, 843–847.

    Article  CAS  PubMed  Google Scholar 

  13. P. Greenspan and S. D. Fowler, Spectrofluorometric studies of the lipid probe, nile red, J. Lipid Res., 1985, 26, 781–789.

    Article  CAS  PubMed  Google Scholar 

  14. M. A. Haidekker and E. A. Theodorakis, Environment-sensitive behavior of fluorescent molecular rotors, J. Biol. Eng., 2010, 4, 11.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. C. Reichardt, Solvatochromic dyes as solvent polarity indicators, Chem. Rev., 1994, 94, 2319–2358.

    Article  CAS  Google Scholar 

  16. Z. R. Grabowski, K. Rotkiewicz and W. Rettig, Structural changes accompanying intramolecular electron transfer: focus on twisted intramolecular charge-transfer states and structures, Chem. Rev., 2003, 103, 3899–4032.

    Article  PubMed  Google Scholar 

  17. N. Sarkar, K. Das, D. N. Nath and K. Bhattacharyya, Twisted charge transfer processes of nile red in homogeneous solutions and in faujasite zeolite, Langmuir, 1994, 10, 326–329.

    Article  CAS  Google Scholar 

  18. P. T. So, C. Y. Dong, B. R. Masters and K. M. Berland, Twophoton excitation fluorescence microscopy, Annu. Rev. Biomed. Eng., 2000, 2, 399–429.

    Article  CAS  PubMed  Google Scholar 

  19. F. Helmchen and W. Denk, Deep tissue two-photon microscopy, Nat. Methods, 2005, 2, 932–940.

    Article  CAS  PubMed  Google Scholar 

  20. Optical-Thermal Response of Laser-Irradiated Tissue, ed. A. J. Welch and M. J. van Gemert, Springer Netherlands, 2nd edn, 2011.

  21. O. A. Kucherak, S. Oncul, Z. Darwich, D. A. Yushchenko, Y. Arntz, P. Didier, Y. Mély and A. S. Klymchenko, Switchable nile red-based probe for cholesterol and lipid order at the outer leaflet of biomembranes, J. Am. Chem. Soc., 2010, 132, 4907–4916.

    Article  CAS  PubMed  Google Scholar 

  22. Experimental procedures and characterization of the Nile Red molecules will be the subject of a forthcoming manuscript.

  23. K. Liu, X. Kong, Y. Ma and W. Lin, Rational design of a robust fluorescent probe for the detection of endogenous carbon monoxide in living zebrafish embryos and mouse tissue, Angew. Chem., Int. Ed., 2017, 56, 13489–13492.

    Article  CAS  Google Scholar 

  24. S.-Y. Park, Y. Kubota, K. Funabiki, M. Shiro and M. Matsui, Near-infrared solid-state fluorescent naphthooxazine dyes attached with bulky dibutylamino and perfluoroalkenyloxy groups at 6-and 9-positions, Tetrahedron Lett., 2009, 50, 1131–1135.

    Article  CAS  Google Scholar 

  25. C. Xu and W. W. Webb, Measurement of two-photon excitation cross sections of molecular fluorophores with data from 690 to 1050 nm, J. Opt. Soc. Am. B, 1996, 13, 481–491.

    Article  CAS  Google Scholar 

  26. M. A. Albota, C. Xu and W. W. Webb, Two-photon fluorescence excitation cross sections of biomolecular probes from 690 to 960 nm, Appl. Opt., 1998, 37, 7352–7356.

    Article  CAS  PubMed  Google Scholar 

  27. R. Medishetty, J. K. Zaręba, D. Mayer, M. Samoć and R. A. Fischer, Nonlinear optical properties, upconversion and Iasing in metal–organic frameworks, Chem. Soc. Rev., 2017, 46, 4976–5004.

    Article  CAS  PubMed  Google Scholar 

  28. S. de Reguardati, J. Pahapill, A. Mikhailov, Y. Stepanenko and A. Rebane, High-accuracy reference standards for twophoton absorption in the 680–1050 nm wavelength range, Opt. Express, 2016, 24, 9053–9066.

    Article  PubMed  PubMed Central  Google Scholar 

  29. T. Yanai, D. P. Tew and N. C. Handy, A new hybrid exchange–correlation functional using the Coulombattenuating method (CAM-B3LYP), Chem. Phys. Lett., 2004, 393, 51–57.

    Article  CAS  Google Scholar 

  30. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci and G. A. Petersson, et al., Gaussian 09, Revision D.01, Gaussian Inc., Wallingford CT, 2009.

    Google Scholar 

  31. F. Furche, R. Ahlrichs, C. Hättig, W. Klopper, M. Sierka and F. Weigend, Turbomole, Wiley Interdiscip. Rev.: Comput. Mol. Sci., 2014, 4, 91–100.

    CAS  Google Scholar 

  32. C. Hättig and F. Weigend, CC2 excitation energy calculations on large molecules using the resolution of the identity approximation, J. Chem. Phys., 2000, 113, 5154–5161.

    Article  Google Scholar 

  33. C. Hättig and A. Köhn, Transition moments and excitedstate first-order properties in the coupled-cluster model CC2 using the resolution-of-the-identity approximation, J. Chem. Phys., 2002, 117, 6939–6951.

    Article  CAS  Google Scholar 

  34. D. H. Friese, C. Hättig and K. Ruud, Calculation of twophoton absorption strengths with the approximate coupled cluster singles and doubles model CC2 using the resolution-of-identity approximation, Phys. Chem. Chem. Phys., 2012, 14, 1175–1184.

    Article  CAS  PubMed  Google Scholar 

  35. C. Reichardt and T. Welton, Solvents and Solvent Effects in Organic Chemistry, Wiley-VCH, 2010.

  36. K. Dimroth, C. Reichardt, T. Siepmann and F. Bohlmann, Über Pyridinium– N– phenol–betaine und ihre Verwendung zur Charakterisierung der Polarität von Lösungsmitteln, Justus Liebigs Ann. Chem., 1963, 661, 1–37.

    Article  CAS  Google Scholar 

  37. C. Reichardt, Pyridinium N-phenolate betaine dyes as empirical indicators of solvent polarity: Some new findings, Pure Appl. Chem., 2004, 76, 1903–1919.

    Article  CAS  Google Scholar 

  38. J. Catalán, Toward a Generalized Treatment of the Solvent Effect Based on Four Empirical Scales: Dipolarity (SdP, a New Scale), Polarizability (SP), Acidity (SA), and Basicity (SB) of the Medium, J. Phys. Chem. B, 2009, 113, 5951–5960.

    Article  PubMed  CAS  Google Scholar 

  39. Y. Marcus, The properties of organic liquids that are relevant to their use as solvating solvents, Chem. Soc. Rev., 1993, 22, 409–416.

    Article  CAS  Google Scholar 

  40. A. K. Dutta, K. Kamada and K. Ohta, Spectroscopic studies of nile red in organic solvents and polymers, J. Photochem. Photobiol., A, 1996, 93, 57–64.

    Article  CAS  Google Scholar 

  41. J. F. Deye, T. A. Berger and A. G. Anderson, Nile Red as a solvatochromic dye for measuring solvent strength in normal liquids and mixtures of normal liquids with supercritical and near critical fluids, Anal. Chem., 1990, 62, 615–622.

    Article  CAS  Google Scholar 

  42. J. Rosenthal and D. I. Schuster, The anomalous reactivity of fluorobenzene in electrophilic aromatic substitution and related phenomena, J. Chem. Educ., 2003, 80, 679.

    Article  CAS  Google Scholar 

  43. A. A. Maryott and E. R. Smith, Table of dielectric constants of pure liquids, U.S. Gov. Print. Office, Washington, D.C., 1951.

    Book  Google Scholar 

  44. A. L. McClellan, Tables of Experimental Dipole Moments, Rahara Enterprises, cop., 1989.

  45. Refractive Indices of Organic Liquids, ed. M. D. Lechner, Springer-Verlag, Berlin/Heidelberg, 1996, vol. 38B.

  46. F. W. Fowler, A. R. Katritzky and R. J. D. Rutherford, The correlation of solvent effects on physical and chemical properties, J. Chem. Soc. B, 1971, 460–469.

  47. T. J. Zuehlsdorff, P. D. Haynes, M. C. Payne and N. D. M. Hine, Predicting solvatochromic shifts and colours of a solvated organic dye: The example of nile red, J. Chem. Phys., 2017, 146, 124504.

    Article  CAS  PubMed  Google Scholar 

  48. A. Yadigarli, Q. Song, S. I. Druzhinin and H. Schönherr, Probing of local polarity in poly (methyl methacrylate) with the charge transfer transition in Nile red, Beilstein J. Org. Chem., 2019, 15, 2552–2562.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. L.-X. Zhang, X.-H. Cao, W.-P. Cai and Y.-Q. Li, Observations of the effect of confined space on fluorescence and diffusion properties of molecules in single conical nanopore channels, J. Fluoresc., 2011, 21, 1865–1870.

    Article  PubMed  Google Scholar 

  50. T. Soujanya, R. W. Fessenden and A. Samanta, Role of nonfluorescent twisted intramolecular charge transfer state on the photophysical behavior of aminophthalimide dyes, J. Phys. Chem., 1996, 100, 3507–3512.

    Article  CAS  Google Scholar 

  51. G. F. Mes, B. de Jong, H. J. van Ramesdonk, J. W. Verhoeven, J. M. Warman, M. P. de Haas and L. E. W. Horsman-van den Dool, Excited-State Dipole Moment and Solvatochromism of Highly Fluorescent Rod-Shaped Bichromophoric Molecules, J. Am. Chem. Soc., 1984, 106, 6524–6528.

    Article  CAS  Google Scholar 

  52. Z. Diwu, Y. Lu, C. Zhang, D. H. Klaubert and R. P. Haugland, Fluorescent molecular probes II. The synthesis, spectral properties and use of fluorescent solvatochromic dapoxyl dyes, Photochem. Photobiol., 1997, 66, 424–431.

    Article  CAS  Google Scholar 

  53. A. Cser, K. Nagy and L. Biczok., Fluorescence lifetime of Nile Red as a probe for the hydrogen bonding strength with its microenvironment, Chem. Phys. Lett., 2002, 360, 473–478.

    Article  CAS  Google Scholar 

  54. E. C. Lim, Proximity effect in molecular photophysics: dynamical consequences of pseudo-Jahn-Teller interaction, J. Phys. Chem., 1986, 90, 6770–6777.

    Article  CAS  Google Scholar 

  55. A. Y. Freidzon, A. A. Safonov, A. A. Bagaturyants and M. V. Alfimov, Solvatofluorochromism and twisted intramolecular charge–transfer state of the nile red dye, Int. J. Quantum Chem., 2012, 112, 3059–3067.

    Article  CAS  Google Scholar 

  56. C. A. Guido, B. Mennucci, D. Jacquemin and C. Adamo, Planar vs. twisted intramolecular charge transfer mechanism in Nile Red: new hints from theory, Phys. Chem. Chem. Phys., 2010, 12, 8016–8023.

    Article  CAS  PubMed  Google Scholar 

  57. A. Kawski, B. Kukliński and P. Bojarski, Photophysical properties and thermochromic shifts of electronic spectra of Nile Red in selected solvents. Excited states dipole moments, Chem. Phys., 2009, 359, 58–64.

    Article  CAS  Google Scholar 

  58. G. B. Dutt, S. Doraiswamy, N. Periasamy and B. Venkataraman, Rotational reorientation dynamics of polar dye molecular probes by picosecond laser spectroscopic technique, J. Chem. Phys., 1990, 93, 8498–8513.

    Article  CAS  Google Scholar 

  59. R. Zaleśny, W. Bartkowiak, S. Styrcz and J. Leszczynski, Solvent Effects on Conformationally Induced Enhancement of the Two-Photon Absorption Cross Section of a Pyridinium-N-Phenolate Betaine Dye. A Quantum Chemical Study, J. Phys. Chem. A, 2002, 106, 4032–4037.

  60. C.-K. Wang, P. Macak, Y. Luo and H. Ågren, Effects of Π centers and symmetry on two-photon absorption cross sections of organic chromophores, J. Chem. Phys., 2001, 114, 9813–9820.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacob Kongsted.

Additional information

Electronic supplementary information (ESI) available: Photophysical properties in table format, 1PA & fluorescence spectra, natural transition orbitals (NTO) for 1–5. See DOI: 10.1039/d0pp00076k

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hornum, M., Reinholdt, P., Zarę ba, J.K. et al. One- and two-photon solvatochromism of the fluorescent dye Nile Red and its CF3, F and Br-substituted analogues. Photochem Photobiol Sci 19, 1382–1391 (2020). https://doi.org/10.1039/d0pp00076k

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/d0pp00076k

Navigation