Issue 8, 2021

Designed protein- and peptide-based hydrogels for biomedical sciences

Abstract

Proteins are fundamentally the most important macromolecules for biochemical, mechanical, and structural functions in living organisms. Therefore, they provide us with diverse structural building blocks for constructing various types of biomaterials, including an important class of such materials, hydrogels. Since natural peptides and proteins are biocompatible and biodegradable, they have features advantageous for their use as the building blocks of hydrogels for biomedical applications. They display constitutional and mechanical similarities with the native extracellular matrix (ECM), and can be easily bio-functionalized via genetic and chemical engineering with features such as bio-recognition, specific stimulus-reactivity, and controlled degradation. This review aims to give an overview of hydrogels made up of recombinant proteins or synthetic peptides as the structural elements building the polymer network. A wide variety of hydrogels composed of protein or peptide building blocks with different origins and compositions – including β-hairpin peptides, α-helical coiled coil peptides, elastin-like peptides, silk fibroin, and resilin – have been designed to date. In this review, the structures and characteristics of these natural proteins and peptides, with each of their gelation mechanisms, and the physical, chemical, and mechanical properties as well as biocompatibility of the resulting hydrogels are described. In addition, this review discusses the potential of using protein- or peptide-based hydrogels in the field of biomedical sciences, especially tissue engineering.

Graphical abstract: Designed protein- and peptide-based hydrogels for biomedical sciences

Article information

Article type
Review Article
Submitted
04 Nov 2020
Accepted
22 Dec 2020
First published
04 Jan 2021

J. Mater. Chem. B, 2021,9, 1919-1940

Designed protein- and peptide-based hydrogels for biomedical sciences

W. Ahn, J. Lee, S. R. Kim, J. Lee and E. J. Lee, J. Mater. Chem. B, 2021, 9, 1919 DOI: 10.1039/D0TB02604B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements