Issue 22, 2021

Optimized hierarchical nickel sulfide as a highly active bifunctional catalyst for overall water splitting

Abstract

Rational design of non-noble metal electrocatalysts with high intrinsic activity for both the oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) is extremely impressive for sustainable electrocatalytic water splitting systems. However, it still remains a major challenge to engineer bifunctional performance. Here, we put forward a highly efficient water electrolyzer based on Ni3S2-based materials. The hierarchical structure of Ni3S2 can be well regulated for optimizing the HER catalytic activity. The best c-Ni3S2/NF electrode exhibits a much smaller overpotential of 220 mV to reach the current density of 100 mA cm−2. Upon introducing Fe species onto the Ni3S2/NF electrode by a simple dipping/drying method, the intrinsic OER activity can be extremely improved. As a result, the Fe-c-Ni3S2/NF catalyst showed excellent catalytic activity for the OER, including an overpotential of 193 mV at 10 mA cm−2, high specific current density and excellent stability. Post-characterization studies proved that the remaining S anions have an effective influence on improving the OER intrinsic activity. The assembled water electrolyzer also presented superior performance, such as a very low cell voltage of 1.50 V at 10 mA cm−2 and excellent durability for 120 h in alkaline medium. This strategy provides a promising way to design highly active and low-cost materials for overall water electrolysis.

Graphical abstract: Optimized hierarchical nickel sulfide as a highly active bifunctional catalyst for overall water splitting

Supplementary files

Article information

Article type
Paper
Submitted
16 Mar 2021
Accepted
03 May 2021
First published
04 May 2021

Dalton Trans., 2021,50, 7776-7782

Optimized hierarchical nickel sulfide as a highly active bifunctional catalyst for overall water splitting

Y. Tong and P. Chen, Dalton Trans., 2021, 50, 7776 DOI: 10.1039/D1DT00867F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements