Issue 0, 1975

Mass spectrometric determinations of the rates of elementary reactions of NO and of NO2 with ground state N4S atoms

Abstract

Kinetic studies of the reactions of NO, (1) and of NO2, (2), with N 4S atoms have been made using direct mass spectrometric detection of N atoms in a discharge flow system. The rate constant k1(cm3 molecule–1 s–1) for the rapid reaction (1), N + NO [graphic omitted] N2+ O (1), has been determined with pseudo first-order kinetic analysis ([NO]0/[N]0[double greater-than, compressed] 1). The mean value for k1 was (2.2 ± 0.2)× 10–11 at 298 K, and between 298 and 670 K, k1 was given by the expression (8.2 ± 1.4)× 10–11 exp[–(410 ± 120) K/T].

Similar kinetic studies of the N + NO2 reaction, using pseudo first-order analysis with very large excesses of NO2([NO2]0/[N]0 > 80), showed the rate constant for this reaction to be an order of magnitude less than the literature value. However, at lower values of [NO2]0/[N]0, much greater apparent rate constants for the N + NO2 reaction were obtained, similar to those found previously. These high values are attributed to a rapid catalytic cycle capable of removing both N atoms and NO2, i.e., N + NO2 [graphic omitted] N2O + O (2A), O + NO2 [graphic omitted] NO + O2(3), N + NO [graphic omitted] N2+ O (1). Reactions (1)+(3) have the stoichiometry, N + NO2→ N2+ O2: No evidence was found from N2O yields in the N + NO2 reaction for any reactive channel involving N + NO2 other than reaction (2A). The results give a mean value for k2A equal to (1.4 ± 0.2)× 10–12 cm3 molecule–1 s–1 at 298 K.

Article information

Article type
Paper

J. Chem. Soc., Faraday Trans. 1, 1975,71, 2189-2202

Mass spectrometric determinations of the rates of elementary reactions of NO and of NO2 with ground state N4S atoms

M. A. A. Clyne and I. S. McDermid, J. Chem. Soc., Faraday Trans. 1, 1975, 71, 2189 DOI: 10.1039/F19757102189

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements