Issue 6, 1992

Applications of laser-induced emission spectral analysis for industrial process and quality control

Abstract

Laser-induced emission spectral analysis (LIESA, a registered trademark of instruments developed by Krupp), better known in the literature as laser microanalysis or laser-induced breakdown spectroscopy, is a suitable method for the direct in-process measurement of elemental concentrations in various solid and liquid materials. This method has been developed recently by Krupp for in-process quality assurance and process control in different industrial branches such as steel production and plant making. As a result several LIESA instruments have already been developed or are under development for marketing. In all cases on-line and in-process elemental analysis of materials at various stages of production yield information on the quality of the material and the fabrication process. The beam of a pulsed high-power laser (irradiance: 1 × 108–5 × 109 W cm–2), focused onto the solid or liquid sample surface in an ambient gas atmosphere of normal pressure (focus area≈ablation area, 0.1–6 mm2), produces a hot bright plasma (early electron temperatures, 20000–30000 K). The emitted plasma light is observed end-on and passes by way of an optical fibre bundle to a spectrometer, where it is detected in the focal plane by means of an optical multichannel analyser with high time resolution (on the microsecond scale). A fast computer evaluates the measured spectra and calculates the element concentrations via calibration procedures. Relative detection limits of between 10 and 100 ppm can be achieved for most of the detectable elements in various matrices (steel, rubber, rock and glass). Procedures are available to convert relative measurements with relative standard deviations of between 1 and 2% into absolute concentration values with relative accuracies of about 3%.

Article information

Article type
Paper

J. Anal. At. Spectrom., 1992,7, 1029-1035

Applications of laser-induced emission spectral analysis for industrial process and quality control

C. J. Lorenzen, C. Carlhoff, U. Hahn and M. Jogwich, J. Anal. At. Spectrom., 1992, 7, 1029 DOI: 10.1039/JA9920701029

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements