Volume 67, 1971

Infra-red studies of rutile surfaces. Part 2.—Hydroxylation, hydration and structure of rutile surfaces

Abstract

A model for the surface structure of rutile is proposed, based on infra-red studies of a crystalline rutile sample prepared by the combustion of Ti(iso-PrO)4. It is suggested that the exterior surfaces of the rutile crystals correspond to three low index crystal planes—namely the (100), (101) and (110). Of these the first two are capable of adsorbing molecular water as ligand coordinated to Ti4+ surface ions, whereas the (110) crystal face adsorbs water dissociatively leading to the presence of equal quantities of two types of OH ions. One of these types is associated with a surface Ti4+ ion which is five coordinate with respect to lattice oxide ions whereas the other type is bound to a surface Ti4+ ion which is only four fold oxide ion coordinate. It is possible to rationalize the observed thermal dehydroxylation and dehydration properties of the oxide and also account for its pyridine adsorption properties.

Article information

Article type
Paper

Trans. Faraday Soc., 1971,67, 2679-2685

Infra-red studies of rutile surfaces. Part 2.—Hydroxylation, hydration and structure of rutile surfaces

P. Jones and J. A. Hockey, Trans. Faraday Soc., 1971, 67, 2679 DOI: 10.1039/TF9716702679

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements