Issue 1, 2001

Formation and reactions of S-nitroso proteins

Abstract

Nitrosation of Bovine Serum Albumin (BSA) by nitrous acid occurs in two stages: a rapid step, which is consistent with an S-nitrosation reaction of a free cysteine unit, followed by a slower reaction which is consistent with an N-nitrosation reaction of a tryptophan residue. The fast reaction is catalysed by chloride and bromide ions (as is the reaction of free cysteine), whereas the slower reaction is not halide ion catalysed (like the reaction of tryptophan). Kinetic results were obtained for both reactions. The derived rate constants for the first stage for the reaction of ClNO and BrNO are reasonably close to the reported values for the reactions of cysteine. The second stage is a reversible process and we can estimate from measured infinity values and also from the variation in the measured rate constant for reactions at different [HNO2], values for the equilibrium constant of 3500 ± 200 and 2600 ± 200 dm3 mol−1 which compare reasonably with the reported value for the reaction of tryptophan of 850 dm3 mol−1. The pKa values of the cysteine residue in both BSA and Human Serum Albumin (HSA) were determined from rate measurements of the reactions with dipyridin-4-yl disulfide (4-aldrithiol), and yielded values of 8.32 and 8.18 respectively, which are close to the accepted value of 8.4 for cysteine itself, and which are substantially higher than the much quoted literature values. The S-nitroso derivatives of both BSA and HSA generated in solution (at ∼1 × 10−4 mol dm−3) showed very little sign of decomposition at pH 7.4 when measured spectrophotometrically, even in the presence of added Cu2+. There was, however, clear evidence of rapid decomposition at much lower reactant concentration (∼1 × 10−6 mol dm−3) yielding nitric oxide in increasing amounts and rates, as Cu2+ is added. These results are discussed in terms of the complexation of the Cu2+ catalyst at different albumin derivative concentrations. Transnitrosation between the S-nitroso derivatives of both BSA and HSA and excess cysteine occurred very readily. These experiments were carried out in the presence of added Cu2+, and the decomposition of the resulting S-nitrosocysteine (S-NOCys) was monitored. The results support the suggestion that S-nitroso proteins can, in theory, act as a reservoir for NO which can readily be made available, either by the Cu2+-catalysed reaction, or more readily by a direct NO+ transfer to a low molecular weight thiol, such as cysteine, which is much more prone to yield NO rapidly and quantitatively by the Cu2+-catalysed pathway. The S-nitroso derivative of BSA also underwent a relatively slow decomposition reaction initiated by cysteine, even in the presence of EDTA. This is discussed in terms of a reaction yielding nitrite anion which is not derived from NO.

Graphical abstract: Formation and reactions of S-nitroso proteins

Article information

Article type
Paper
Submitted
09 Oct 2000
Accepted
22 Nov 2000
First published
13 Dec 2000

J. Chem. Soc., Perkin Trans. 2, 2001, 13-17

Formation and reactions of S-nitroso proteins

D. R. Noble and D. L. H. Williams, J. Chem. Soc., Perkin Trans. 2, 2001, 13 DOI: 10.1039/B008112O

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements