Skip to main content
Log in

Two-photon absorption cross-sections and time-resolved fluorescence imaging using porphyrin photosensitisers

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Three porphyrin systems have been characterised for use in two-photon fluorescence imaging of biological samples. We have determined the two-photon absorption cross sections (σ2) of the di-cation, free-base and metallated forms of hematoporphyrin derivative (HpD), hematoporphyrin IX (Hp9) and a boronated protoporphyrin (BOPP) using the open-aperture Z-scan and the two-photon induced fluorescence (TPIF) techniques at an excitation wavelength of 800 nm. The insertion of either protons or a metal ion into the macrocycle is shown not to significantly influence the σ2 of the porphyrins. Two-photon time-resolved fluorescence images of C6 glioma cells transfected with a free-base form of the BOPP have been obtained as a function of the porphyrin concentration. These studies reveal a maximum useful porphyrin concentration for fluorescence imaging purposes of approximately 30 µg mL−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes and references

  1. C. N. Ironside Contem. Phys., 1993, 34, 1.

    Google Scholar 

  2. T. Sekikawa, T. Kanai, S. Watanabe Phys. Rev. Lett., 2003, 91, 103902.

    Google Scholar 

  3. O. Lammel, A. Penzkofer Opt. Quant. Electr, 2000, 32, 1147.

    Google Scholar 

  4. G. Zhou, X. Wang, D. Wang, Z. Shao, M. Jiang Appl. Opt., 2002, 41, 1120.

    Google Scholar 

  5. M. G. Silly, L. Porrès, O. Mongin, P.-A. Chollet, M. Blanchard-Desce Chem. Phys. Lett., 2003, 379, 74.

    Google Scholar 

  6. T. Yu, C. K. Ober, S. M. Kuebler, W. Zhou, S. R. Marder, J. W. Perry Adv. Mater., 2003, 15, 517.

    Google Scholar 

  7. S. Maruo, K. Ikuta, H. Korogi Appl. Phys. Lett., 2003, 82, 133.

    Google Scholar 

  8. H. E. Pudavar, M. P. Joshi, P. N. Prasad, B. A. Reinhardt Appl. Phys. Lett., 1999, 74, 1338.

    Google Scholar 

  9. R. W. Boyd, Nonlinear Optics, Academic Press, New York, 1993.

    Google Scholar 

  10. R. L. Swofford, A. C. Albrecht Annu. Rev. Phys. Chem., 1978, 29, 421.

    Google Scholar 

  11. J. D. Bhawalkar, G. S. He, P. N. Prasad Rep. Prog. Phys., 1996, 59, 1041.

    Google Scholar 

  12. D. W. Piston Trends Cell Biol., 1999, 9, 66.

    Google Scholar 

  13. W. G. Fischer, W. P. Partridge, C. Dees, E. A. Wachter Photochem. Photobiol., 1997, 66, 141.

    Google Scholar 

  14. J. M. Song, T. Inoue, H. Kawazumi, T. Ogawa Anal. Sci., 1999, 15, 601.

    Google Scholar 

  15. P. Schwille, U. Haupts, S. Maiti, W. W. Webb Biophys. J., 1999, 77, 2251.

    Google Scholar 

  16. V. E. Centonze, J. G. White Biophys. J., 1998, 75, 2015.

    Google Scholar 

  17. W. Denk, J. H. Strickler, W. W. Webb Science, 1990, 248, 73.

    Google Scholar 

  18. G. J. Brakenhoff, M. Muller, R. I. Ghauharali J. Microsc., 1996, 183, 140.

    Google Scholar 

  19. Y. Mir, D. Houde, J. E. Van Lier Photochem. Photobiol. Sci., 2006, 5, 1024.

    Google Scholar 

  20. R. L. Goyan, D. T. Cramb Photochem. Photobiol., 2000, 72, 821.

    Google Scholar 

  21. J. Liu, Y. W. Zhao, J. Q. Zhao, A. D. Xia, L. J. Jiang, S. Wu, L. Ma, Y. Q. Dong, Y. H. Gu J. Photochem. Photobiol., B, 2002, 68, 156.

    Google Scholar 

  22. D. Gao, R. R. Agayan, H. Xu, M. A. Philbert, R. Kopelman Nano Lett., 2006, 6, 2383.

    Google Scholar 

  23. K. Kandasamy, S. J. Shetty, P. N. Puntambekar, T. S. Srivastava, T. Kundu, B. P. Singh J. Porphyrins Phthalocyanines, 1999, 3, 81.

    Google Scholar 

  24. I. E. Borissevitch, A. G. Bezzeerra-Jr, A. S. L. Gomes, R. E. De Araujo, C. B. De Araujo, K. M. T. Oliveira, M. Trsic J. Porphyrins Phthalocyanines, 2001, 5, 51.

    Google Scholar 

  25. B. P. Singh, R. Vijaya, T. Kundu, K. Kandasamy, P. N. Puntambekar, S. J. Shetty, T. S. Srivastava J. Porphyrins Phthalocyanines, 2001, 5, 439.

    Google Scholar 

  26. E. W. Van Stryland and M. Sheik-Bahae, Z-scan measurements of optical nonlinearities, in Characterization Techniques and Tabulations for Organic Nonlinear Materials, ed. M. G. Kuzyk and C. W. Dirk, Marcel Dekker, Inc, New York, 1998, p. 655.

    Google Scholar 

  27. M. Shiek-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, E. W. Van Stryland IEEE J. Quantum Electron., 1990, QE-26, 760.

    Google Scholar 

  28. D. A. Oulianov, I. V. Tomov, A. S. Dvornikov, P. M. Rentzepis Opt. Commun., 2001, 191, 235.

    Google Scholar 

  29. S. B. Kahl, M.-S. Koo J. Chem. Soc., Chem. Commun., 1990, 24, 1769.

    Google Scholar 

  30. M. Gouterman, G. H. Wagniere, L. C. Snyder J. Mol. Spectrosc., 1963, 11, 108.

    Google Scholar 

  31. A. Gnoli, L. Razzari, M. Righini Opt. Express, 2005, 13, 7976.

    Google Scholar 

  32. S. Venugopal Rao, D. Narayana Rao, J. A. Akkara, B. S. DeCristofana, D. V. G. L. N. Rao Chem. Phys. Lett., 1998, 297, 491.

    Google Scholar 

  33. M. Göppert-Mayer Ann. Phys., 1931, 9, 273.

    Google Scholar 

  34. P. Sengupta, J. Balaji, S. Banerjee, R. Philip, G. Ravindra Kumar, S. Maiti J. Chem. Phys., 2000, 112, 9201.

    Google Scholar 

  35. M. A. Albota, C. Xu, W. W. Webb Appl. Opt., 1998, 37, 7352.

    Google Scholar 

  36. A. Fischer, C. Cremer, E. H. K. Stelzer Appl. Opt., 1995, 34, 1989.

    Google Scholar 

  37. M. Kauert, P. C. Stoller, M. Frenz, J. Ricka Opt. Express, 2006, 14, 8434.

    Google Scholar 

  38. D. V. O’Connor and D. Phillips, Time-Correlated Single Photon Counting, Academic Press, London, 1984.

    Google Scholar 

  39. M. McClain Acc. Chem. Res., 1974, 7, 129.

    Google Scholar 

  40. X.-J. Liu, J.-K. Feng, A.-M. Ren, X. Zhou Chem. Phys. Lett., 2003, 373, 197.

    Google Scholar 

  41. P. Murasecco, E. Oliveros, A. M. Braun, P. Monnier Photobiochem. Photobiophys., 1985, 9, 193.

    Google Scholar 

  42. M. Drobizhev, A. Karotki, K. Kruk, A. Rebane Chem. Phys. Lett., 2002, 355, 175.

    Google Scholar 

  43. A. Karotki, M. Kruk, M. Drobizhev, A. Rebane J. Mod. Opt., 2002, 49, 379.

    Google Scholar 

  44. A. Karotki, M. Khurana, J. R. Lepock, B. C. Wilson Photochem. Photobiol., 2006, 82, 443.

    Google Scholar 

  45. A. Holder and D. Lagostera, 2004, http://lagrange.math.trinity.edu/tumath/research/reports/report88.pdf.

  46. P. G. Spizzirri, J. S. Hill, S. B. Kahl, K. P. Ghiggino Photochem. Photobiol., 1996, 64, 975.

    Google Scholar 

  47. P. G. Spizzirri, J. S. Hill, S. B. Kahl, K. P. Ghiggino Lasers Med. Sci., 1996, 11, 237.

    Google Scholar 

  48. J. S. Hill, S. B. Kahl, A. H. Kaye, S. S. Stylli, M.-S. Koo, M. F. Gonzales Proc. Natl. Acad. Sci. USA, 1992, 89, 1785.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Trevor A. Smith.

Additional information

This paper was published as part of the special issue in honour of David Phillips.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mathai, S., Bird, D.K., Stylli, S.S. et al. Two-photon absorption cross-sections and time-resolved fluorescence imaging using porphyrin photosensitisers. Photochem Photobiol Sci 6, 1019–1026 (2007). https://doi.org/10.1039/b705101h

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/b705101h

Navigation