Issue 33, 2011

Size-selective silver nanoparticles: future of biomedical devices with enhanced bactericidal properties

Abstract

Silver nanoparticles (AgNPs) are attracting attention due to their bactericidal activity and consequent possible biomedical applications. The key to their broad-acting and potent biocidal property seems to be based on the size-related mechanism by which AgNPs act on different bacteria strains. Here, we report the synthesis and successful size-selective fractionation of AgNPs obtained through chemical reduction of silver nitrate in ethylene glycol using polyvinylpyrrolidone as a protective agent. A combination of characterization techniques (UV-vis spectroscopy, transmission electron microscopy and small-angle X-ray scattering) is employed to differentiate the two size-fractionated samples. From the analyses, it is evidenced that AgNPs are mainly spherical and have their radius centered at ∼8.5 and ∼11.0 nm. The nanoparticles bactericidal efficacy is investigated using the disk diffusion test against Escherichia coli, Staphylococcus aureus, Staphylococcus epidermidis and Micrococcus lysodeikticus. Although both fractionated samples present bactericidal activity against all four tested bacteria (one Gram negative and three Gram positives), those presenting smaller size own enhanced antibacterial properties.

Graphical abstract: Size-selective silver nanoparticles: future of biomedical devices with enhanced bactericidal properties

Article information

Article type
Paper
Submitted
23 May 2011
Accepted
31 May 2011
First published
08 Jul 2011

J. Mater. Chem., 2011,21, 12267-12273

Size-selective silver nanoparticles: future of biomedical devices with enhanced bactericidal properties

V. Dal Lago, L. França de Oliveira, K. de Almeida Gonçalves, J. Kobarg and M. Borba Cardoso, J. Mater. Chem., 2011, 21, 12267 DOI: 10.1039/C1JM12297E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements