Issue 9, 2014

Modeling crawling cell movement on soft engineered substrates

Abstract

Self-propelled motion, emerging spontaneously or in response to external cues, is a hallmark of living organisms. Systems of self-propelled synthetic particles are also relevant for multiple applications, from targeted drug delivery to the design of self-healing materials. Self-propulsion relies on the force transfer to the surrounding. While self-propelled swimming in the bulk of liquids is fairly well characterized, many open questions remain in our understanding of self-propelled motion along substrates, such as in the case of crawling cells or related biomimetic objects. How is the force transfer organized and how does it interplay with the deformability of the moving object and the substrate? How do the spatially dependent traction distribution and adhesion dynamics give rise to complex cell behavior? How can we engineer a specific cell response on synthetic compliant substrates? Here we generalize our recently developed model for a crawling cell by incorporating locally resolved traction forces and substrate deformations. The model captures the generic structure of the traction force distribution and faithfully reproduces experimental observations, like the response of a cell on a gradient in substrate elasticity (durotaxis). It also exhibits complex modes of cell movement such as “bipedal” motion. Our work may guide experiments on cell traction force microscopy and substrate-based cell sorting and can be helpful for the design of biomimetic “crawlers” and active and reconfigurable self-healing materials.

Graphical abstract: Modeling crawling cell movement on soft engineered substrates

Supplementary files

Article information

Article type
Paper
Submitted
08 Jun 2013
Accepted
04 Sep 2013
First published
12 Sep 2013

Soft Matter, 2014,10, 1365-1373

Modeling crawling cell movement on soft engineered substrates

J. Löber, F. Ziebert and I. S. Aranson, Soft Matter, 2014, 10, 1365 DOI: 10.1039/C3SM51597D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements