Issue 5, 2015

Improved antiparasitic activity by incorporation of organosilane entities into half-sandwich ruthenium(ii) and rhodium(iii) thiosemicarbazone complexes

Abstract

A series of ferrocenyl- and aryl-functionalised organosilane thiosemicarbazone compounds was obtained via a nucleophilic substitution reaction with an amine-terminated organosilane. The thiosemicarbazone (TSC) ligands were further reacted with either a ruthenium dimer [(η6-iPrC6H4Me)Ru(μ-Cl)Cl]2 or a rhodium dimer [(Cp*)Rh(μ-Cl)Cl]2 to yield a series of cationic mono- and binuclear complexes. The thiosemicarbazone ligands, as well as their metal complexes, were characterised using NMR and IR spectroscopy, and mass spectrometry. The molecular structure of the binuclear ruthenium(II) complex was determined by single-crystal X-ray diffraction analysis. The thiosemicarbazones and their complexes were evaluated for their in vitro antiplasmodial activities against the chloroquine-sensitive (NF54) and chloroquine-resistant (Dd2) Plasmodium falciparum strains, displaying activities in the low micromolar range. Selected compounds were screened for potential β-haematin inhibition activity, and it was found that two Rh(III) complexes exhibited moderate to good inhibition. Furthermore, the compounds were screened for their antitrichomonal activities against the G3 Trichomonas vaginalis strain, revealing a higher percentage of growth inhibition for the ruthenium and rhodium complexes over their corresponding ligand.

Graphical abstract: Improved antiparasitic activity by incorporation of organosilane entities into half-sandwich ruthenium(ii) and rhodium(iii) thiosemicarbazone complexes

Supplementary files

Article information

Article type
Paper
Submitted
20 Oct 2014
Accepted
05 Dec 2014
First published
05 Jan 2015
This article is Open Access
Creative Commons BY-NC license

Dalton Trans., 2015,44, 2456-2468

Improved antiparasitic activity by incorporation of organosilane entities into half-sandwich ruthenium(II) and rhodium(III) thiosemicarbazone complexes

M. Adams, C. de Kock, P. J. Smith, K. M. Land, N. Liu, M. Hopper, A. Hsiao, A. R. Burgoyne, T. Stringer, M. Meyer, L. Wiesner, K. Chibale and G. S. Smith, Dalton Trans., 2015, 44, 2456 DOI: 10.1039/C4DT03234A

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements