Issue 40, 2014

Property modulation of benzodithiophene-based polymers via the incorporation of a covalently bonded novel 2,1,3-benzothiadiazole-1,2,4-oxadiazole derivative in their main chain for polymer solar cells

Abstract

Two new electron accepting monomers (BBOB and BOB) containing two serially connected different electron deficient units, such as 2,1,3-benzothiadiazole and 1,2,4-oxadiazole, were prepared and copolymerized with electron-rich benzodithiophene (BDT) derivative to afford polymers P(BDT-BBOB) and P(BDT-BOB), respectively. The optical band gaps of P(BDT-BBOB) and P(BDT-BOB) are calculated to be 2.32 eV and 1.99 eV, respectively, and their highest occupied molecular energy levels are determined to be −5.31 eV and −5.27 eV, respectively. Each of the newly synthesized polymers, i.e.P(BDT-BBOB) and P(BDT-BOB), is used as an electron donor, along with PC61BM as an electron acceptor, in the preparation of polymer solar cells (PSCs). The PSCs made with the configuration of ITO/PEDOT:PSS/P(BDT-BBOB) or P(BDT-BOB):PC61BM (1 : 2 wt%)/LiF/Al gave a maximum power conversion efficiency (PCE) of 1.76% and 2.46%, respectively, and the device performance was further improved to 3.31% and 4.21%, respectively, by simply treating the photoactive layer of PSCs with isopropyl alcohol. Overall, the opto-electrical and photovoltaic properties of the two polymers are found to be quite dependent on the configuration of the covalently bonded 2,1,3-benzothiadiazole and 1,2,4-oxadiazole units incorporated in the polymer main chain.

Graphical abstract: Property modulation of benzodithiophene-based polymers via the incorporation of a covalently bonded novel 2,1,3-benzothiadiazole-1,2,4-oxadiazole derivative in their main chain for polymer solar cells

Article information

Article type
Paper
Submitted
17 Jul 2014
Accepted
19 Aug 2014
First published
21 Aug 2014

J. Mater. Chem. C, 2014,2, 8515-8524

Author version available

Property modulation of benzodithiophene-based polymers via the incorporation of a covalently bonded novel 2,1,3-benzothiadiazole-1,2,4-oxadiazole derivative in their main chain for polymer solar cells

R. Agneeswari, V. Tamilavan, M. Song and M. H. Hyun, J. Mater. Chem. C, 2014, 2, 8515 DOI: 10.1039/C4TC01558D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements