Skip to main content
Log in

Cobalt oxide as a selective co-catalyst for water oxidation in the presence of an organic dye

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

In photobiocatalytical processes involving the simultaneous oxidation of water and reduction of specific organic molecules (e.g., cofactors), the lack of physical separation of the redox half-reactions adversely affects the product stability. This is largely because organic molecules are generally less stable within harsh oxidative environments. In general, surface co-catalysts are able to improve the selectivity of photo-catalysts towards water oxidation. However, harsh oxidative environments reduce the chemical stability of the organic molecules. Herein, we show that the use of Co3O4 as a surface co-catalyst on silver ortho-phosphate improve water photo-oxidation in the presence of organic dye molecules, such as methylene blue, that typically exhibits susceptibility toward photodegradation. The presence of Co3O4 on the photo-catalyst surface prevents the adsorption of the organic dye, thus reducing its degradation rate. These findings provide a promising scenario for the visible light-driven reduction of organic molecules using water as an electron donor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. A. Maciá-Agulló, A. Corma and H. Garcia, Photobiocatalysis: The Power of Combining Photocatalysis and Enzymes, Chem. - Eur. J., 2015, 21, 10940–10959.

    Article  Google Scholar 

  2. M. Mifsud, S. Gargiulo, S. Iborra, I. W. C. E. Arends, F. Hollmann and A. Corma, Photobiocatalytic chemistry of oxidoreductases using water as the electron donor, Nat. Commun., 2014, 5, 3145.

    Article  Google Scholar 

  3. X. Deng and H. Tüysüz, Cobalt-Oxide-Based Materials as Water Oxidation Catalyst: Recent Progress and Challenges, ACS Catal., 2014, 4, 3701–3714.

    Article  CAS  Google Scholar 

  4. V. Artero, M. Chavarot-Kerlidou and M. Fontecave, Splitting Water with Cobalt, Angew. Chem., Int. Ed., 2011, 50, 7238–7266.

    Article  CAS  Google Scholar 

  5. M. W. Kanan, Y. Surendranath and D. G. Nocera, Cobalt- phosphate oxygen-evolving compound, Chem. Soc. Rev., 2009, 38, 109.

    Article  CAS  Google Scholar 

  6. B. M. Hunter, H. B. Gray and A. M. Müller, Earth-Abundant Heterogeneous Water Oxidation Catalysts, Chem. Rev., 2016, 116, 14120–14136.

    Article  CAS  Google Scholar 

  7. J. P. Torella, C. J. Gagliardi, J. S. Chen, D. K. Bediako, B. Colón, J. C. Way, P. A. Silver and D. G. Nocera, Efficient solar-to-fuels production from a hybrid microbial-water- splitting catalyst system, Proc. Natl. Acad. Sci. U. S. A., 2015, 201424872.

    Google Scholar 

  8. C. Liu, B. C. Colón, M. Ziesack, P. A. Silver and D. G. Nocera, Water splitting-biosynthetic system with CO2 reduction efficiencies exceeding photosynthesis, Science, 2016, 352, 1210–1213.

    Article  CAS  Google Scholar 

  9. M. Grzelczak, J. Zhang, J. Pfrommer, J. Hartmann, M. Driess, M. Antonietti and X. Wang, Electro- and Photochemical Water Oxidation on Ligand-free Co3O4 Nanoparticles with Tunable Sizes, ACS Catal., 2013, 3, 383–388.

    Article  CAS  Google Scholar 

  10. J. Zhang, M. Grzelczak, Y. Hou, K. Maeda, K. Domen, X. Fu, M. Antonietti and X. Wang, Photocatalytic oxidation of water by polymeric carbon nitride nanohybrids made of sustainable elements, Chem. Sci., 2012, 3, 443–446.

    Article  CAS  Google Scholar 

  11. D. J. Martin, G. Liu, S. J. A. Moniz, Y. Bi, A. M. Beale, J. Ye and J. Tang, Efficient visible driven photocatalyst, silver phosphate: performance, understanding and perspective, Chem. Soc. Rev., 2015, 44, 7808–7828.

    Article  CAS  Google Scholar 

  12. G. Li, Y. Wang and L. Mao, Recent progress in highly efficient Ag-based visible-light photocatalysts, RSC Adv., 2014, 4, 53649–53661.

    Article  CAS  Google Scholar 

  13. G. Botelho, J. Andres, L. Gracia, L. S. Matos and E. Longo, Photoluminescence and Photocatalytic Properties of Ag3 PO4 Microcrystals: An Experimental and Theoretical Investigation, ChemPlusChem, 2016, 81, 202–212.

    Article  CAS  Google Scholar 

  14. X. Chen, Y. Dai and X. Wang, Methods and mechanism for improvement of photocatalytic activity and stability of Ag3PO4: A review, J. Alloys Compd., 2015, 649, 910–932.

    Article  CAS  Google Scholar 

  15. Z. Yi, J. Ye, N. Kikugawa, T. Kako, S. Ouyang, H. Stuart-Williams, H. Yang, J. Cao, W. Luo, Z. Li, Y. Liu and R. L. Withers, An orthophosphate semiconductor with photooxidation properties under visible-light irradiation, Nat. Mater., 2010, 9, 559–564.

    Article  CAS  Google Scholar 

  16. Y. Bi, S. Ouyang, N. Umezawa, J. Cao and J. Ye, Facet Effect of Single-Crystalline Ag3PO4 Sub-microcrystals on Photocatalytic Properties, J. Am. Chem. Soc., 2011, 133, 6490–6492.

    Article  CAS  Google Scholar 

  17. S. Thiyagarajan, S. Singh and D. Bahadur, Reusable sun- light activated photocatalyst Ag3PO4 and its significant antibacterial activity, Mater. Chem. Phys., 2016, 173, 385–394.

    Article  CAS  Google Scholar 

  18. T. Yan, H. Zhang, Y. Liu, W. Guan, J. Long, W. Li and J. You, Fabrication of robust M/Ag3PO4 (M = Pt, Pd, Au) Schottky-type heterostructures for improved visible-light photocatalysis, RSCAdv., 2014, 4, 37220–37230.

    CAS  Google Scholar 

  19. Z.-M. Yang, G.-F. Huang, W.-Q. Huang, J.-M. Wei, X.-G. Yan, Y.-Y. Liu, C. Jiao, Z. Wan and A. Pan, Novel Ag3PO4/CeO2 composite with high efficiency and stability for photocatalytic applications, J. Mater. Chem. A, 2014, 2, 1750–1756.

    Article  CAS  Google Scholar 

  20. C. Tang, E. Liu, J. Wan, X. Hu and J. Fan, Co3O4 nano- particles decorated Ag3PO4 tetrapods as an efficient visible- light-driven heterojunction photocatalyst, Appl. Catal., B, 2016, 181, 707–715.

    Article  CAS  Google Scholar 

  21. M. C. Biesinger, B. P. Payne, A. P. Grosvenor, L. W. M. Lau, A. R. Gerson and R. S. C. Smart, Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni, Appl. Surf. Sci., 2011, 257, 2717–2730.

    Article  CAS  Google Scholar 

  22. J. F. Moulder and J. Chastain, Handbook of X-ray Photoelectron Spectroscopy: A Reference Book of Standard Spectra for Identification and Interpretation of XPS Data, Physical Electronics, 1995.

    Google Scholar 

  23. Z. Yi, J. Ye, N. Kikugawa, T. Kako, S. Ouyang, H. Stuart-Williams, H. Yang, J. Cao, W. Luo, Z. Li, Y. Liu and R. L. Withers, An orthophosphate semiconductor with photooxidation properties under visible-light irradiation, Nat. Mater., 2010, 9, 559–564.

    Article  CAS  Google Scholar 

  24. W. Peng, X. Wang and X. Li, The synergetic effect of MoS2 and graphene on Ag3PO4 for its ultra-enhanced photo- catalytic activity in phenol degradation under visible light, Nanoscale, 2014, 6, 8311.

    Article  CAS  Google Scholar 

  25. Q. Wang, S. Tian and P. Ning, Degradation Mechanism of Methylene Blue in a Heterogeneous Fenton-like Reaction Catalyzed by Ferrocene, Ind. Eng. Chem. Res., 2014, 53, 643–649.

    Article  CAS  Google Scholar 

  26. S. Xia, L. Zhang, G. Pan, P. Qian and Z. Ni, Photocatalytic degradation of methylene blue with a nanocomposite system: synthesis, photocatalysis and degradation path- ways, Phys. Chem. Chem. Phys., 2015, 17, 5345–5351.

    Article  CAS  Google Scholar 

  27. L. Li, Y. Zhao, M. Antonietti and M. Shalom, New Organic Semiconducting Scaffolds by Supramolecular Preorganization: Dye Intercalation and Dye Oxidation and Reduction, Small, 2016, 12, 6090–6097.

    Article  CAS  Google Scholar 

  28. S. Sohrabnezhad, A. Pourahmad, R. Rakhshaee, A. Radaee and S. Heidarian, Catalytic reduction of methylene blue by sulfide ions in the presence of nanoAlMCM-41 material, Superlattices Microstruct., 2010, 47, 411–421.

    Article  CAS  Google Scholar 

  29. K. Huang, Y. Lv, W. Zhang, S. Sun, B. Yang, F. Chi, S. Ran and X. Liu, One-step Synthesis of Ag3PO4/Ag Photocatalyst with Visible-light Photocatalytic Activity, Mater. Res., 2015, 18, 939–945.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

MG acknowledges the Spanish Ministerio de Economia y Competitividad (MINECO) (MAT2013-49375-EXP). J. B. and V. P. acknowledge MINECO for the grant BIO2014-59741-R. A. C. acknowledges Spanish Ministry of Science and Education, Consolider-Ingenio 2010 Program, Project No. CSD2006-53. Authors thank Ana Sánchez-Iglesias, Daniel Padró and Yury Rakovich for assistance with TEM, NMR, and fluorescence characterization.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Grzelczak.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kinastowska, K., Barroso, J., Yate, L. et al. Cobalt oxide as a selective co-catalyst for water oxidation in the presence of an organic dye. Photochem Photobiol Sci 16, 1771–1777 (2017). https://doi.org/10.1039/c7pp00320j

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c7pp00320j

Navigation