Issue 9, 2020

Does carrier velocity saturation help to enhance fmax in graphene field-effect transistors?

Abstract

It has been argued that current saturation in graphene field-effect transistors (GFETs) is needed to get optimal maximum oscillation frequency (fmax). This paper investigates whether velocity saturation can help to get better current saturation and if that correlates with enhanced fmax. We have fabricated 500 nm GFETs with high extrinsic fmax (37 GHz), and later simulated with a drift–diffusion model augmented with the relevant factors that influence carrier velocity, namely: short-channel electrostatics, saturation velocity effect, graphene/dielectric interface traps, and self-heating effects. Crucially, the model provides microscopic details of channel parameters such as carrier concentration, drift and saturation velocities, allowing us to correlate the observed macroscopic behavior with the local magnitudes. When biasing the GFET so all carriers in the channel are of the same sign resulting in highly concentrated unipolar channel, we find that the larger the drain bias is, both closer the carrier velocity to its saturation value and the higher the fmax are. However, the highest fmax can be achieved at biases where there exists a depletion of carriers near source or drain. In such a situation, the highest fmax is not found in the velocity saturation regime, but where carrier velocity is far below its saturated value and the contribution of the diffusion mechanism to the current is comparable to the drift mechanism. The position and magnitude of the highest fmax depend on the carrier concentration and total velocity, which are interdependent and are also affected by the self-heating. Importantly, this effect was found to severely limit radio-frequency performance, reducing the highest fmax from ∼60 to ∼40 GHz.

Graphical abstract: Does carrier velocity saturation help to enhance fmax in graphene field-effect transistors?

Supplementary files

Article information

Article type
Paper
Submitted
20 Nov 2019
Accepted
23 Jul 2020
First published
24 Jul 2020
This article is Open Access
Creative Commons BY-NC license

Nanoscale Adv., 2020,2, 4179-4186

Does carrier velocity saturation help to enhance fmax in graphene field-effect transistors?

P. C. Feijoo, F. Pasadas, M. Bonmann, M. Asad, X. Yang, A. Generalov, A. Vorobiev, L. Banszerus, C. Stampfer, M. Otto, D. Neumaier, J. Stake and D. Jiménez, Nanoscale Adv., 2020, 2, 4179 DOI: 10.1039/C9NA00733D

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements