Skip to main content
Log in

A thermostable flavin-based fluorescent protein from Chloroflexus aggregans: a framework for ultra-high resolution structural studies

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Light-Oxygen-Voltage (LOV) domains are conserved parts of photoreceptors in plants, bacteria and fungi that bind flavins as chromophores and detect blue light. In the past, LOV domain variants have been developed as fluorescent reporter proteins (called flavin-based fluorescent proteins; FbFPs), which due to their ability to fluoresce under anaerobic conditions, fast folding kinetics and a small size of ~12–16 kDa are a promising reporter system for quantitative real-time analysis of biological processes. Here, we present a small thermostable flavin-based fluorescent protein CagFbFP derived from a soluble LOV domain-containing histidine kinase from the thermophilic bacterium Chloroflexus aggregans. CagFbFP is composed of 107 amino acids with a molecular weight of 11.6 kDa and consists only of the conserved LOV core domain. The protein is thermostable with a melting point of about 68 °C. It crystallizes easily and its crystals diffract to 1.07 Å. Both the crystal structure and small angle scattering data show that the protein is a dimer. Unexpectedly, gluta-mine 148, which in LOV photoreceptor proteins is the key residue responsible for signal transduction, occupies two conformations. Molecular dynamics simulations show that the two conformations interconvert rapidly. The crystal structure of the wild-type Chloroflexus aggregans LOV domain determined at 1.22 Å resolution confirmed the presence of two alternative conformations of the glutamine 148 side chain. Overall, this protein, due to its stability and ease of crystallization, appears to be a promising model for ultra-high resolution structural studies of LOV domains and for application as a fluorescent reporter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Herrou and S. Crosson, Function, structure and mechanism of bacterial photosensory LOV proteins, Nat. Rev. Microbiol., 2011, 9, 713–723.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. B. D. Zoltowski and K. H. Gardner, Tripping the light fantastic: blue-light photoreceptors as examples of environmentally modulated protein-protein interactions, Biochemistry, 2011, 50, 4–16.

    Article  CAS  PubMed  Google Scholar 

  3. K. S. Conrad, C. C. Manahan and B. R. Crane, Photochemistry of flavoprotein light sensors, Nat. Chem. Biol., 2014, 10, 801–809.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. A. Losi, C. Mandalari and W. Gärtner, The Evolution and Functional Role of Flavin-based Prokaryotic Photoreceptors, Photochem. Photobiol., 2015, 91, 1021–1031.

    Article  CAS  PubMed  Google Scholar 

  5. J. T. Henry and S. Crosson, Ligand-Binding PAS Domains in a Genomic, Cellular, and Structural Context, Annu. Rev. Microbiol., 2011, 65, 261–286.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. S. T. Glantz, E. J. Carpenter, M. Melkonian, K. H. Gardner, E. S. Boyden, G. K.-S. Wong and B. Y. Chow, Functional and topological diversity of LOV domain photoreceptors, Proc. Natl. Acad. Sci. U. S. A., 2016, 113, E1442–E1451.

  7. A. Losi and W. Gärtner, Solving Blue Light Riddles: New Lessons from Flavin-binding LOV Photoreceptors, Photochem. Photobiol., 2017, 93, 141–158.

    Article  CAS  PubMed  Google Scholar 

  8. T. Fettweiss, K. Röllen, J. Granzin, O. Reiners, S. Endres, T. Drepper, D. Willbold, K.-E. Jaeger, R. Batra-Safferling and U. Krauss, Mechanistic basis of the fast dark recovery of the short LOV protein DsLOV from Dinoroseobacter shibae, Biochemistry, 2018, 57, 4833–4847.

    Article  CAS  PubMed  Google Scholar 

  9. M. Salomon, J. M. Christie, E. Knieb, U. Lempert and W. R. Briggs, Photochemical and mutational analysis of the FMN-binding domains of the plant blue light receptor, phototropin, Biochemistry, 2000, 39, 9401–9410.

    Article  CAS  PubMed  Google Scholar 

  10. A. M. Buckley, J. Petersen, A. J. Roe, G. R. Douce and J. M. Christie, LOV-based reporters for fluorescence imaging, Curr. Opin. Chem. Biol., 2015, 27, 39–45.

    Article  CAS  PubMed  Google Scholar 

  11. A. Mukherjee and C. M. Schroeder, Flavin-based fluorescent proteins: emerging paradigms in biological imaging, Curr. Opin. Biotechnol., 2015, 31, 16–23.

    Article  CAS  PubMed  Google Scholar 

  12. T. Drepper, T. Eggert, F. Circolone, A. Heck, U. Krauss, J.-K. Guterl, M. Wendorff, A. Losi, W. Gärtner and K.-E. Jaeger, Reporter proteins for, in vivo fluorescence without oxygen, Nat. Biotechnol., 2007, 25, 443–445.

    Article  CAS  PubMed  Google Scholar 

  13. S. Chapman, C. Faulkner, E. Kaiserli, C. Garcia-Mata, E. I. Savenkov, A. G. Roberts, K. J. Oparka and J. M. Christie, The photoreversible fluorescent protein iLOV outperforms GFP as a reporter of plant virus infection, Proc. Natl. Acad. Sci. U. S. A., 2008, 105, 20038–20043.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. J. M. Christie, K. Hitomi, A. S. Arvai, K. A. Hartfield, M. Mettlen, A. J. Pratt, J. A. Tainer and E. D. Getzoff, Structural tuning of the fluorescent protein iLOV for improved photostability, J. Biol. Chem., 2012, 287, 22295–22304.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. A. Mukherjee, J. Walker, K. B. Weyant and C. M. Schroeder, Characterization of flavin-based fluorescent proteins: an emerging class of fluorescent reporters, PLoS One, 2013, 8, e64753.

  16. X. Song, Y. Wang, Z. Shu, J. Hong, T. Li and L. Yao, Engineering a more thermostable blue light photo receptor Bacillus subtilis YtvA LOV domain by a computer aided rational design method, PLoS Comput. Biol., 2013, 9, e1003129.

  17. A. Mukherjee, K. B. Weyant, U. Agrawal, J. Walker, I. K. O. Cann and C. M. Schroeder, Engineering and characterization of new LOV-based fluorescent proteins from Chlamydomonas reinhardtii and Vaucheria frigida, ACS Synth. Biol., 2015, 4, 371–377.

    Article  CAS  PubMed  Google Scholar 

  18. M. Wingen, K.-E. Jaeger, T. Gensch and T. Drepper, Novel Thermostable Flavin-binding Fluorescent Proteins from Thermophilic Organisms, Photochem. Photobiol., 2017, 93, 849–856.

    Article  CAS  PubMed  Google Scholar 

  19. S. Hanada, A. Hiraishi, K. Shimada and K. Matsuura, Chloroflexus aggregans sp. nov., a filamentous phototrophic bacterium which forms dense cell aggregates by active gliding movement, Int. J. Syst. Bacteriol., 1995, 45, 676–681.

    Article  CAS  PubMed  Google Scholar 

  20. R. D. Finn, T. K. Attwood, P. C. Babbitt, A. Bateman, P. Bork, A. J. Bridge, H.-Y. Chang, Z. Dosztányi, S. El-Gebali, M. Fraser, J. Gough, D. Haft, G. L. Holliday, H. Huang, X. Huang, I. Letunic, R. Lopez, S. Lu, A. Marchler-Bauer, H. Mi, J. Mistry, D. A. Natale, M. Necci, G. Nuka, C. A. Orengo, Y. Park, S. Pesseat, D. Piovesan, S. C. Potter, N. D. Rawlings, N. Redaschi, L. Richardson, C. Rivoire, A. Sangrador-Vegas, C. Sigrist, I. Sillitoe, B. Smithers, S. Squizzato, G. Sutton, N. Thanki, P. D. Thomas, S. C. E. Tosatto, C. H. Wu, I. Xenarios, L.-S. Yeh, S.-Y. Young and A. L. Mitchell, InterPro in 2017—beyond protein family and domain annotations, Nucleic Acids Res., 2017, 45, D190–D199.

  21. C. P. Zschiedrich, V. Keidel and H. Szurmant, Molecular Mechanisms of Two-Component Signal Transduction, J. Mol. Biol., 2016, 428, 3752–3775.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. M. P. Bhate, K. S. Molnar, M. Goulian and W. F. DeGrado, Signal Transduction in Histidine Kinases: Insights from New Structures, Structure, 2015, 23, 981–994.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. I. Gushchin and V. Gordeliy, Transmembrane Signal Transduction in Two-Component Systems: Piston, Scissoring, or Helical Rotation?, BioEssays, 2018, 40, 1700197.

    Article  CAS  Google Scholar 

  24. K. Röllen, J. Granzin, R. Batra-Safferling and A. M. Stadler, Small-angle X-ray scattering study of the kinetics of lightdark transition in a LOV protein, PLoS One, 2018, 13(7), e0200746.

  25. J. S. Lamb, B. D. Zoltowski, S. A. Pabit, B. R. Crane and L. Pollack, Time-resolved dimerization of a PAS-LOV protein measured with photocoupled small angle X-ray scattering, J. Am. Chem. Soc., 2008, 130, 12226–12227.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. U. Heintz and I. Schlichting, Blue light-induced LOV domain dimerization enhances the affinity of Aureochrome 1a for its target DNA sequence, eLife, 2016, 5, e11860.

  27. A. Banerjee, E. Herman, T. Kottke and L.-O. Essen, Structure of a Native-like Aureochrome 1a LOV Domain Dimer from Phaeodactylum tricornutum, Structure, 2016, 24, 171–178.

    Article  CAS  PubMed  Google Scholar 

  28. K. S. Conrad, A. M. Bilwes and B. R. Crane, Light-induced subunit dissociation by a light-oxygen-voltage domain photoreceptor from Rhodobacter sphaeroides, Biochemistry, 2013, 52, 378–391.

    Article  CAS  PubMed  Google Scholar 

  29. M. Wingen, J. Potzkei, S. Endres, G. Casini, C. Rupprecht, C. Fahlke, U. Krauss, K.-E. Jaeger, T. Drepper and T. Gensch, The photophysics of LOV-based fluorescent proteins–new tools for cell biology, Photochem. Photobiol. Sci., 2014, 13, 875–883.

    Article  CAS  PubMed  Google Scholar 

  30. M. D. Davari, B. Kopka, M. Wingen, M. Bocola, T. Drepper, K.-E. Jaeger, U. Schwaneberg and U. Krauss, Photophysics of the LOV-Based Fluorescent Protein Variant iLOV-Q489 K Determined by Simulation and Experiment, J. Phys. Chem. B, 2016, 120, 3344–3352.

    Article  CAS  PubMed  Google Scholar 

  31. J. Jancarik and S.-H. Kim, Sparse matrix sampling: a screening method for crystallization of proteins, J. Appl. Crystallogr., 1991, 24, 409–411.

    Article  CAS  Google Scholar 

  32. J. Torra, C. Lafaye, L. Signor, S. Aumonier, C. Flors, X. Shu, S. Nonell, G. Gotthard and A. Royant, Tailing miniSOG: structural bases of the complex photophysics of a flavinbinding singlet oxygen photosensitizing protein, Sci. Rep., 2019, 9, 2428.

    Article  PubMed  PubMed Central  Google Scholar 

  33. A. Pudasaini, J. S. Shim, Y. H. Song, H. Shi, T. Kiba, D. E. Somers, T. Imaizumi and B. D. Zoltowski, Kinetics of the LOV domain of ZEITLUPE determine its circadian function in Arabidopsis, eLife, 2017, 6, e21646.

  34. V. Arinkin, J. Granzin, K. Röllen, U. Krauss, K.-E. Jaeger, D. Willbold and R. Batra-Safferling, Structure of a LOV protein in apo-state and implications for construction of LOV-based optical tools, Sci. Rep., 2017, 7, 42971.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. B. D. Zoltowski, C. Schwerdtfeger, J. Widom, J. J. Loros, A. M. Bilwes, J. C. Dunlap and B. R. Crane, Conformational switching in the fungal light sensor Vivid, Science, 2007, 316, 1054–1057.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. M. G. Khrenova, A. V. Nemukhin and T. Domratcheva, Theoretical Characterization of the Flavin-Based Fluorescent Protein iLOV and its Q489 K Mutant, J. Phys. Chem. B, 2015, 119, 5176–5183.

    Article  CAS  PubMed  Google Scholar 

  37. B. D. Zoltowski, B. Vaccaro and B. R. Crane, Mechanismbased tuning of a LOV domain photoreceptor, Nat. Chem. Biol., 2009, 5, 827–834.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. J. Lokhandwala, R. I. Silverman, Y. de la Vega, H. C. Hopkins, C. W. Britton, A. Rodriguez-Iglesias, R. Bogomolni, M. Schmoll and B. D. Zoltowski, A Native Threonine Coordinates Ordered Water to Tune Light-Oxygen-Voltage (LOV) Domain Photocycle Kinetics and Osmotic Stress Signaling in Trichoderma reesei ENVOY, J. Biol. Chem., 2016, 291, 14839–14850.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. F. Kawano, Y. Aono, H. Suzuki and M. Sato, Fluorescence imaging-based high-throughput screening of fast- and slow-cycling LOV proteins, PLoS One, 2013, 8, e82693.

  40. J. M. Christie, S. B. Corchnoy, T. E. Swartz, M. Hokenson, I.-S. Han, W. R. Briggs and R. A. Bogomolni, Steric interactions stabilize the signaling state of the LOV2 domain of phototropin 1, Biochemistry, 2007, 46, 9310–9319.

    Article  CAS  PubMed  Google Scholar 

  41. G. Rivera-Cancel, W. Ko, D. R. Tomchick, F. Correa and K. H. Gardner, Full-length structure of a monomeric histidine kinase reveals basis for sensory regulation, Proc. Natl. Acad. Sci. U. S. A., 2014, 111, 17839–17844.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. J. Lokhandwala, H. C. Hopkins, A. Rodriguez-Iglesias, C. Dattenböck, M. Schmoll and B. D. Zoltowski, Structural biochemistry of a fungal LOV domain photoreceptor reveals an evolutionarily conserved pathway integrating light and oxidative stress, Structure, 2015, 23, 116–125.

    Article  CAS  PubMed  Google Scholar 

  43. J. Rinaldi, M. Gallo, S. Klinke, G. Paris, H. R. Bonomi, R. A. Bogomolni, D. O. Cicero and F. A. Goldbaum, The β-scaffold of the LOV domain of the Brucella light-activated histidine kinase is a key element for signal transduction, J. Mol. Biol., 2012, 420, 112–127.

    Article  CAS  PubMed  Google Scholar 

  44. A. Möglich and K. Moffat, Structural basis for light-dependent signaling in the dimeric LOV domain of the photosensor YtvA, J. Mol. Biol., 2007, 373, 112–126.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. A. S. Halavaty and K. Moffat, N- and C-terminal flanking regions modulate light-induced signal transduction in the LOV2 domain of the blue light sensor phototropin 1 from Avena sativa, Biochemistry, 2007, 46, 14001–14009.

    Article  CAS  PubMed  Google Scholar 

  46. F. W. Studier, Protein production by auto-induction in high-density shaking cultures, Protein Expression Purif., 2005, 41, 207–234.

  47. L. G. Whitby, A new method for preparing flavin-adenine dinucleotide, Biochem. J., 1953, 54, 437–442.

  48. M. Kataoka, S. Shimizu and H. Yamada, Purification and characterization of a novel FMN-dependent enzyme. Membrane-bound L-(+)-pantoyl lactone dehydrogenase from Nocardia asteroides, Eur. J. Biochem., 1992, 204, 799–806.

    Article  CAS  PubMed  Google Scholar 

  49. M. R. Wilkins, E. Gasteiger, A. Bairoch, J. C. Sanchez, K. L. Williams, R. D. Appel and D. F. Hochstrasser, Protein identification and analysis tools in the ExPASy server, Methods Mol. Biol., 1999, 112, 531–552.

    CAS  PubMed  Google Scholar 

  50. M. Kaschner, A. Loeschcke, J. Krause, B. Q. Minh, A. Heck, S. Endres, V. Svensson, A. Wirtz, A. von Haeseler, K.-E. Jaeger, T. Drepper and U. Krauss, Discovery of the first light-dependent protochlorophyllide oxidoreductase in anoxygenic phototrophic bacteria, Mol. Microbiol., 2014, 93, 1066–1078.

    Article  CAS  PubMed  Google Scholar 

  51. C. E. Blanchet, A. Spilotros, F. Schwemmer, M. A. Graewert, A. Kikhney, C. M. Jeffries, D. Franke, D. Mark, R. Zengerle, F. Cipriani, S. Fiedler, M. Roessle and D. I. Svergun, Versatile sample environments and automation for biological solution X-ray scattering experiments at the P12 beamline (PETRA III, DESY), J. Appl. Crystallogr., 2015, 48, 431–443.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. D. Franke, M. V. Petoukhov, P. V. Konarev, A. Panjkovich, A. Tuukkanen, H. D. T. Mertens, A. G. Kikhney, N. R. Hajizadeh, J. M. Franklin, C. M. Jeffries and D. I. Svergun, ATSAS 2.8: a comprehensive data analysis suite for small-angle scattering from macromolecular solutions, J. Appl. Crystallogr., 2017, 50, 1212–1225.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. H. Fischer, O. Neto, M. De, H. B. Napolitano, I. Polikarpov and A. F. Craievich, Determination of the molecular weight of proteins in solution from a single small-angle X-ray scat-tering measurement on a relative scale, J. Appl. Crystallogr., 2010, 43, 101–109.

    Article  CAS  Google Scholar 

  54. A. Hoffmann and S. Grudinin, NOLB: Nonlinear Rigid Block Normal-Mode Analysis Method, J. Chem. Theory Comput., 2017, 13, 2123–2134.

    Article  CAS  PubMed  Google Scholar 

  55. S. Grudinin, M. Garkavenko and A. Kazennov, Pepsi-SAXS: an adaptive method for rapid and accurate computation of small-angle X-ray scattering profiles, Acta Crystallogr., Sect. D: Struct. Biol., 2017, 73, 449–464.

    Article  CAS  Google Scholar 

  56. W. Kabsch, XDS, Acta Crystallogr., Sect. D: Biol. Crystallogr., 2010, 66, 125–132.

  57. P. Evans, Scaling and assessment of data quality, Acta Crystallogr., Sect. D: Biol. Crystallogr., 2005, 62, 72–82.

  58. A. Vagin and A. Teplyakov, Molecular replacement with MOLREP, Acta Crystallogr., Sect. D: Biol. Crystallogr., 2009, 66, 22–25.

    Article  CAS  Google Scholar 

  59. M. Källberg, H. Wang, S. Wang, J. Peng, Z. Wang, H. Lu and J. Xu, Template-based protein structure modeling using the RaptorX web server, Nat. Protoc., 2012, 7, 1511–1522.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. P. Emsley, B. Lohkamp, W. G. Scott and K. Cowtan, Features and development of Coot, Acta Crystallogr., Sect. D: Biol. Crystallogr., 2010, 66, 486–501.

    Article  CAS  Google Scholar 

  61. G. N. Murshudov, P. Skubák, A. A. Lebedev, N. S. Pannu, R. A. Steiner, R. A. Nicholls, M. D. Winn, F. Long and A. A. Vagin, REFMAC5 for the refinement of macromolecular crystal structures, Acta Crystallogr., Sect. D: Biol. Crystallogr., 2011, 67, 355–367.

    Article  CAS  Google Scholar 

  62. M. H. M. Olsson, C. R. Søndergaard, M. Rostkowski and J. H. Jensen, PROPKA3: Consistent Treatment of Internal and Surface Residues in Empirical pKa Predictions, J. Chem. Theory Comput., 2011, 7, 525–537.

    Article  CAS  PubMed  Google Scholar 

  63. V. Hornak, R. Abel, A. Okur, B. Strockbine, A. Roitberg and C. Simmerling, Comparison of multiple Amber force fields and development of improved protein backbone parameters, Proteins: Struct., Funct., Bioinf., 2006, 65, 712–725.

    Article  CAS  Google Scholar 

  64. W. D. Cornell, P. Cieplak, C. I. Bayly, I. R. Gould, K. M. Merz, D. M. Ferguson, D. C. Spellmeyer, T. Fox, J. W. Caldwell and P. A. Kollman, A Second Generation Force Field for the Simulation of Proteins, Nucleic Acids, and Organic Molecules, J. Am. Chem. Soc., 1995, 117, 5179–5197.

    Article  CAS  Google Scholar 

  65. J. Wang, R. M. Wolf, J. W. Caldwell, P. A. Kollman and D. A. Case, Development and testing of a general amber force field, J. Comput. Chem., 2004, 25, 1157–1174.

    Article  CAS  PubMed  Google Scholar 

  66. D. A. Case, V. Babin, J. Berryman, R. M. Betz, Q. Cai, D. S. Cerutti, C. Iii, T. E. Cheatham, III, T. A. Darden, R. E. Duke, H. Gohlke, A. W. Goetz, S. Gusarov, N. Homeyer, P. Janowski, J. Kaus, I. Kolossváry, A. Kovalenko, T. S. Lee, S. LeGrand, T. Luchko, R. Luo, B. Madej, K. M. Merz, F. Paesani, D. R. Roe, A. Roitberg, C. Sagui, R. Salomon-Ferrer, G. Seabra, C. L. Simmerling, W. Smith, J. Swails, R. C. Walker, J. Wang, R. M. Wolf, X. Wu and P. A. Kollman, Amber 14, University of California, San Francisco, 2014.

  67. W. L. Jorgensen, J. Chandrasekhar, J. D. Madura, R. W. Impey and M. L. Klein, Comparison of simple potential functions for simulating liquid water, J. Chem. Phys., 1983, 79, 926–935.

    Article  CAS  Google Scholar 

  68. U. Essmann, L. Perera, M. L. Berkowitz, T. Darden, H. Lee and L. G. Pedersen, A smooth particle mesh Ewald method, J. Chem. Phys., 1995, 103, 8577–8593.

    Article  CAS  Google Scholar 

  69. W. L. DeLano, The PyMOL molecular graphics system, 2002.

  70. W. Humphrey, A. Dalke and K. Schulten, VMD Visual molecular dynamics, J. Mol. Graphics, 1996, 14, 33–38.

    Article  CAS  Google Scholar 

  71. P. A. Karplus and K. Diederichs, Linking Crystallographic Model and Data Quality, Science, 2012, 336, 1030–1033.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. M. A. Larkin, G. Blackshields, N. P. Brown, R. Chenna, P. A. McGettigan, H. McWilliam, F. Valentin, I. M. Wallace, A. Wilm, R. Lopez, J. D. Thompson, T. J. Gibson and D. G. Higgins, Clustal W and Clustal X version 2.0, Bioinformatics, 2007, 23, 2947–2948.

    Article  CAS  PubMed  Google Scholar 

  73. A. M. Waterhouse, J. B. Procter, D. M. A. Martin, M. Clamp and G. J. Barton, Jalview Version 2–a multiple sequence alignment editor and analysis workbench, Bioinformatics, 2009, 25, 1189–1191.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. D. Liebschner, P. V. Afonine, N. W. Moriarty, B. K. Poon, O. V. Sobolev, T. C. Terwilliger and P. D. Adams, Polder maps: improving OMIT maps by excluding bulk solvent, Acta Crystallogr., Sect. D: Biol. Crystallogr., 2017, 73, 148–157.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivan Gushchin.

Additional information

Electronic supplementary information (ESI) available: ESI Table S1 and Fig. S1–S5. See DOI: 10.1039/c9pp00067d

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nazarenko, V.V., Remeeva, A., Yudenko, A. et al. A thermostable flavin-based fluorescent protein from Chloroflexus aggregans: a framework for ultra-high resolution structural studies. Photochem Photobiol Sci 18, 1793–1805 (2019). https://doi.org/10.1039/c9pp00067d

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c9pp00067d

Navigation