Issue 13, 2019

Increasing the optical response of TiO2 and extending it into the visible region through surface activation with highly stable Cu5 clusters

Abstract

The decoration of semiconductors with subnanometer-sized clusters of metal atoms can have a strong impact on the optical properties of the support. The changes induced differ greatly from effects known for their well-studied, metallic counterparts in the nanometer range. In this work, we study the deposition of Cu5 clusters on a TiO2 surface and investigate their influence on the photon-absorption properties of TiO2 nanoparticles via the computational modeling of a decorated rutile TiO2 (110) surface. Our findings are further supported by selected experiments using diffuse reflectance and X-ray absorption spectroscopy. The Cu5 cluster donates an electron to TiO2, leading to the formation of a small polaron Ti3+ 3d1 state and depopulation of Cu(3d) orbitals, successfully explaining the absorption spectroscopy measurements at the K-edge of copper. A monolayer of highly stable and well fixated Cu5 clusters is formed, which not only enhances the overall absorption, but also extends the absorption profile into the visible region of the solar spectrum via direct photo-induced electron transfer and formation of a charge-separated state.

Graphical abstract: Increasing the optical response of TiO2 and extending it into the visible region through surface activation with highly stable Cu5 clusters

Supplementary files

Article information

Article type
Paper
Submitted
25 Jan 2019
Accepted
15 Feb 2019
First published
16 Feb 2019
This article is Open Access
Creative Commons BY-NC license

J. Mater. Chem. A, 2019,7, 7489-7500

Increasing the optical response of TiO2 and extending it into the visible region through surface activation with highly stable Cu5 clusters

M. Pilar de Lara-Castells, A. W. Hauser, J. M. Ramallo-López, D. Buceta, L. J. Giovanetti, M. A. López-Quintela and F. G. Requejo, J. Mater. Chem. A, 2019, 7, 7489 DOI: 10.1039/C9TA00994A

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements