Issue 31, 2021

Chalcogenide nanoparticles and organic photosensitizers for synergetic antimicrobial photodynamic therapy

Abstract

Synergistic antimicrobial effects were observed for copper sulfide (CuS) nanoparticles together with indocyanine green (ICG) in the elimination of wild type pathogenic bacteria (Staphylococcus aureus ATCC 29213 and Pseudomonas aeruginosa ATCC 27853) and also opportunistic fungal infective yeast (Candida albicans ATCC 10231). Furthermore, large antibacterial effects were observed for clinical isolates of Methicillin-resistant S. aureus (MRSA) PFGE strain-type USA300. This efficient antimicrobial action was attributed to the combined extra- and intracellular generation of reactive oxygen species upon light irradiation. Instead of the use of visible-light for the activation of common photosensitizers, both ICG and CuS nanoparticles can be activated in the near infrared (NIR)-region of the electromagnetic spectrum and therefore, superior tissue penetration would be expected in a potential elimination of pathogenic microorganisms not only on the skin but also in the soft tissue. In the different bacteria studied a 3-log reduction in the bacterial counts was achieved after only 6 min of NIR irradiation and treatment with ICG or CuS alone at concentrations of 40 and 160 µg mL−1, respectively. A maximum bactericidal effect against S. aureus and USA300 strains was obtained for the combination of both photosensitizers at the same concentration. Regarding P. aeruginosa, a 4-log reduction in the CFU was observed for the combination of CuS and ICG at various concentrations. In Candida albicans the combination of both ICG and CuS and light irradiation showed an antimicrobial dose-dependent effect with the reduction of at least 3-log in the cell counts for the combination of ICG + CuS at reduced concentrations. The observed antimicrobial effect was solely attributed to a photodynamic effect and any photothermal effect was avoided to discard any potential thermal injury in a potential clinical application. The generation of reactive oxygen species upon near infrared-light irradiation for those photosensitizers used was measured either alone or in combination. The cytocompatibility of the proposed materials at the doses used in photodynamic therapy was also demonstrated in human dermal fibroblasts and keratinocytes by cell culturing and flow cytometry studies.

Graphical abstract: Chalcogenide nanoparticles and organic photosensitizers for synergetic antimicrobial photodynamic therapy

Supplementary files

Article information

Article type
Paper
Submitted
29 Apr 2021
Accepted
25 Jul 2021
First published
26 Jul 2021

J. Mater. Chem. B, 2021,9, 6246-6259

Chalcogenide nanoparticles and organic photosensitizers for synergetic antimicrobial photodynamic therapy

C. Garin, T. Alejo, V. Perez-Laguna, M. Prieto, G. Mendoza, M. Arruebo, V. Sebastian and A. Rezusta, J. Mater. Chem. B, 2021, 9, 6246 DOI: 10.1039/D1TB00972A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements