Issue 3, 2023, Issue in Progress

A new and straightforward route to synthesize novel pyrazolo[3,4-b]pyridine-5-carboxylate scaffolds from 1,4-dihydropyrano[2,3-c]pyrazole-5-carbonitriles

Abstract

Among many acidic catalysts, amorphous carbon-supported sulfonic acid (AC-SO3H) has been evaluated as a new-generation solid catalyst with outstanding activity. Because of the –SO3H groups, the surface properties of the amorphous carbon catalyst were improved, which made the catalytic activity of the amorphous carbon-supported sulfonic acid many times greater than that of sulfuric acid. The amorphous carbon-supported sulfonic acid exhibited several advantages such as low cost, non-toxicity, porosity, stability, and easily adjustable chemical surface. In this paper, we introduce a new pathway for the synthesis of pyrazolo[3,4-b]pyridine-5-carboxylate scaffolds from 1,4-dihydropyrano[2,3-c]pyrazole-5-carbonitriles and aniline at room temperature under ethanol in the presence of AC-SO3H as the catalyst. This method provided the desired products with moderate to good yields. The gram-scale synthesis of the major product was carried out with good yields (up to 80%). This strategy involves a sequential opening/closing cascade reaction. This approach presents several advantages, including room temperature conditions, short reaction time, and operational simplicity.

Graphical abstract: A new and straightforward route to synthesize novel pyrazolo[3,4-b]pyridine-5-carboxylate scaffolds from 1,4-dihydropyrano[2,3-c]pyrazole-5-carbonitriles

Supplementary files

Article information

Article type
Paper
Submitted
29 Nov 2022
Accepted
25 Dec 2022
First published
11 Jan 2023
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2023,13, 1877-1882

A new and straightforward route to synthesize novel pyrazolo[3,4-b]pyridine-5-carboxylate scaffolds from 1,4-dihydropyrano[2,3-c]pyrazole-5-carbonitriles

H. T. Nguyen, P. H. Dang and P. H. Tran, RSC Adv., 2023, 13, 1877 DOI: 10.1039/D2RA07521K

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements