Skip to main content
  • Original Article
  • Published:

Morphological evaluation of cork oak (Quercus suber): Mediterranean provenance variability in Tunisia

Évaluation morphologique chez le chêne liège (Quercus suber) : variabilité des provenances méditerranéennes en Tunisie

Abstract

Twenty-six provenances (2 340 plants) of cork oak (Quercus suber spp.) originating from Portugal, Spain, Italy, Morocco, Algeria, and Tunisia were tested for genetic variation among and within provenances by growth traits. Seven morphometrical characters were measured in 90 plants from each provenance. Analysis of variance showed highly significant differences for all characters. The phenotypic coefficient of differentiation reached 0.24 for the form and 0.22 for height, thus revealing a strong structuring between the provenances. Comparative study of growth among the provenances revealed more vigorous growth and better survival rate for those from Morocco, Spain, and Portugal, which may constitute better materials for afforestation. Furthermore, this variability appeared to be geographically structured and would be mainly genetically controlled, as cork oak provenances were cultivated under the same environmental conditions. Our results should be helpful for guide forest managers in afforestation.

Résumé

La variabilité génétique inter et intra-provenances a été étudiée pour des caractères de croissance chez Quercus suber spp. 26 provenances (2 340 individus) de chêne liège originaires d’Espagne, du Portugal, d’Italie, du Maroc, d’Algérie et de la Tunisie ont été implantées et testées. Sept caractères morphométriques, jugés discriminants, ont été mesurés chez 90 individus par provenance. L’analyse statistique des résultats a montré des différences hautement significatives entre ces provenances. Le plus haut coefficient de différentiation Qst est trouvé pour les caractères forme (0,24 %) et hauteur (0,22 %). L’étude comparative a en outre révélé une croissance plus vigoureuse associée à une moindre mortalité chez les provenances originaires du Portugal, d’Espagne et du Maroc, leur conférant ainsi un intérêt potentiel pour le reboisement. La variabilité observée chez le chêne liège apparaît structurée selon l’origine géographique et serait essentiellement de nature génétique, puisque toutes les provenances ont été cultivées dans les mêmes conditions pédoclimatiques.

References

  1. Alia R., Gil L., Pardos J.A., performance of 43 Pinus pinaster Ait. Provenance on 5 locations in centrale Spain, Silvae Genet. 44 (1995) 75–81.

    Google Scholar 

  2. Avise J.C., Phylogeography, the history and formation of species, Harvard University Press, Cambrige, Massachusetts, 2000.

    Google Scholar 

  3. Burollet P., Remarques géodynamiques sur le nord-est tunisien, C.K. Somm. SOC Geol. Fr., 8 (1971) 411–414.

    Google Scholar 

  4. Burollet R., Byramjee R.S., Réflexion sur la technique globale. Exemples africains et méditerranéens, Comp. franç. des pétroles, Notes et mémoires, 1974, pp. 71–120.

  5. Elena-Rossello J.A., Lumaret R., Cabrera E. Michaud H., Evidence for hybridization between sympatric Holm oak and cork oak in Spain based on diagnostic enzyme markers, Vegetatio 99-100 (1992) 115–118.

    Article  Google Scholar 

  6. Endler J., Geographic variation, Speciation, and clines, Princeton University Press, Princeton, NJ, 1977.

    Google Scholar 

  7. Endler J.A., Natural selection in the wild, Princeton University Press, Princeton, NJ 1986.

    Google Scholar 

  8. Eriksson G., conservation of noble hardwoods in Europe, Can. J. For. Res. 31 (2001) 577–587.

    Article  Google Scholar 

  9. Faith D.P., Conservation, evaluation and phylogenetic diversity, Biol. Conserv. 61 (1992) 1–10.

    Article  Google Scholar 

  10. Frison E., Varela M.C., Turok J. (Eds.), Quercus suber network, Report of the first two meetings 1–3 December 1994 and 26–27 February 1995, Rome, Italy, 1995.

  11. Guttman S.I., Weigt L.A., Electrophoretic evidence of relationships among Quercus (oaks) of eastern North America, Can. J. Bot. 67 (1988) 339–351.

    Article  Google Scholar 

  12. Hasnaoui B., Régénération naturelle du chêne liège : difficultés et propositions de solutions, Ann. l’ENRGREF, Numéro spécial, 1998.

  13. Hokanson S.C., Isebrands J.G., Jensen R.J., Hancock J.F., Isozyme variation in oaks of the Apostle islands in Wisconsin: genetic structure and levels of inbreeding in Quercus rubra and Q. ellipsoidalis (Fagaceae), 1993.

  14. Jensen R.J., De Piero R., Smith B.K., Vegetative characters, population variation and the hybrid origin of Quercus ellipsoidalis, Am. Midl. Nat. 111 (1984) 364–370.

    Article  Google Scholar 

  15. Jensen R.J., Assessing patterns of morphological variation of Quercus spp. in mixed-oak communities, Am. Midl. Nat. 120 (1988) 120–135.

    Article  Google Scholar 

  16. Junttila O., Effects of temperature on shoot growth in northern provenances of Pinus sylvestris L. Tree Physiol. 1 (1986) 185–192.

    PubMed  Google Scholar 

  17. Kremer A., Petit R.J., Gene diversity in natural populations of oak species, Ann Sci. For. 50 (1993) 186–202.

    Article  Google Scholar 

  18. Lande R., Natural selection and random genetic drift in phenotypic evolution, Evolution 30 (1976) 314–334.

    Article  Google Scholar 

  19. Lande R., Stastistical tests for natural selection on quantitative characters, Evolution 31 (1977) 442–444.

    Article  Google Scholar 

  20. Lynch M., The rate of morphological evolution in mammals from the standpoint of the neutral expectation, Am. Nat. 136 (1990) 727–741.

    Article  Google Scholar 

  21. Lynch M., A quantitative genetic perspective on conservation issues, in: Avise J., Hamrik J. (Eds.), Conservation genetics: case histories from nature Chapman and Hall, New York, 1996, pp. 471–501.

    Google Scholar 

  22. Lynch M., Hill W.G., Phenotypic evolution by neutral mutation, Evolution 40 (1986) 915–935.

    Article  Google Scholar 

  23. Lourenço M.J., Almaida M.H., Chambel M.R., Varela M.C., Petit R.J., Pereira J.S., Genetic variation of Quercus suber: a tool for regeneration of cork oak woodlands, http://www.ecologicalrestoriation.net/archivos/lourenco.

  24. Manos P.S., Fairbrothers D.E., Allozyme variation in population of six northeastern American red oaks (Fagaceae: Quercus subgenus Erythrobalanus), Syst. Bot. 12 (1987) 365–373.

    Article  Google Scholar 

  25. Mantel N.A., The detection of disease clustering and a generalized regression approach, Cancer Res. 27 (1967) 209–220.

    PubMed  CAS  Google Scholar 

  26. Mckay J.K., Latta R.G., Adaptive population divergence: markers, QTL and traits, Trends Ecol. Evol. 17 (2002) 285–291.

    Article  Google Scholar 

  27. Merilä J., Crnokrak P., Comparaison of genetic differentiation at marker loci and quantitative traits, J. Evol. Biol. 14 (2001) 892–903.

    Article  Google Scholar 

  28. Podolosky R.H., Holtsford T.P., Population structure of morphological traits in clarkia dudleyana. I. Comparaison of Fst between allozymes and morphological traits, Genetics 140 (1995) 733–44.

    Google Scholar 

  29. Rouvier H., Géologie de l’extrême Nord tunisien. Tectoniques et paléogéographie superposées à l’extrémité orientale de la chaîne Nord-magrebine, Thèse doctorat d’état, Univ. Pierre et Marie Curie, 1977.

  30. Rubuy J.L., The correspondence between genetic, morphological and climatic variation patterns in scotch pine, Silvae Genet. 16 (1967) 50–56.

    Google Scholar 

  31. Saatcioglu F., Results of the 25 year’s provenance experiment established by using 16 Scotch pine of European and 1 of native provenances in turkey, Silvae Genet. 5 (1967) 172–177.

    Google Scholar 

  32. Samuel R., Pinsker W., Ehrendorfer F., Electrophoretic analysis of genetic variation within and between populations of Quercus cerris, Q. pubescens, Q. petraea and Q. robur (Fagaceae) from eastern Austria, Bot. Acta 108 (1995) 290–299.

    CAS  Google Scholar 

  33. Schaal B.A., Haywood D.A., Olsen K.M., Rausher J.T., Smith W.A., Phylogeographic studies in plants: problems and prospects, Mol. Ecol. 7 (1998) 465–474.

    Article  Google Scholar 

  34. Schanabel A., Hamrik J.L., Comparative analysis of populations genetics structure in Quercus macrocarpa and Q. gambelli (Fagaceae), Syst. Bot. 15 (1990) 240–251.

    Article  Google Scholar 

  35. Snedecor G.W., Cochran W.G., Statistical methods, The Iowa State University Press, Ames, Iowa, USA, 1967.

    Google Scholar 

  36. Sokol R.R., Michener C.D., A statistical method for evaluating systematic relationships, Univ. Kansas Science Bulletin 28 (1958) 1409–1438.

    Google Scholar 

  37. Sokal R.R., Rolf F.J., Biometry, San Francisco, W. H. Freeman Co., 1995.

  38. Spitze K., Population structure in daphnia obtuse: quantitative genetics and allozymic variation, Genetics 135 (1993) 367–374.

    PubMed  CAS  Google Scholar 

  39. Soulé M.E., Mills L.S., conservation genetics and conservation biology: a troubled marriage, in: Sandlund O.T., Hindar K., Brown A.H.D. (Eds.), Conservation of biodiversity for Sustainable Development, Scandinavian University press, 1992, pp. 55–69.

  40. Storfer A., Quantitative genetics: a promising approach for the assessment of genetic variation in endangered species, Trends Ecol. Evol. 11 (1996) 343–348.

    Article  PubMed  CAS  Google Scholar 

  41. Toumi L., Lumaret R., Allozyme variation in cork oak (Quercus suber L.): the role of phylogeography and genetic intogression by other Mediterranean oak species and human activities, Theor. Appl. Genet. 97 (1998) 647–656.

    Article  CAS  Google Scholar 

  42. Tucker J.M., Hybridization in California oaks, Fremontia 18 (1990) 13–19.

    Google Scholar 

  43. Weir B.S., Cokerham’s C.C., Estimating F-statistics for the analysis of population structure, Evolution 38 (1984) 1358–1370.

    Article  Google Scholar 

  44. Young A., Boshier D., Boyle T., Forest Conservation Genetics: Principles and practice, CABI Publishing, Wallingford, UK, 2000.

    Google Scholar 

  45. Zanetto A., Kremer A., Labbe T., Diffrences of genetic variation based on isozymes of primary and secondary metabolism in Quercus petraea, Ann. For. Sci. 50 (1993) 245–252.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mhemmed Gandour.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gandour, M., Khouja, M.L., Toumi, L. et al. Morphological evaluation of cork oak (Quercus suber): Mediterranean provenance variability in Tunisia. Ann. For. Sci. 64, 549–555 (2007). https://doi.org/10.1051/forest:2007032

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1051/forest:2007032