Skip to main content
  • Original Article
  • Published:

Seasonal changes in carbohydrates, cyclitols, and water relations of 3 field grown Eucalyptus species from contrasting taxonomy on a common site

Variations saisonnières des hydrates de carbone, des cyclitols et des relations hydriques chez 3 espèces d’Eucalyptus de taxonomie contrastée, en plein champ et poussant sur un site commun

Abstract

  • • Alterations in plant chemistry underpin a suite of physiological adaptations to arid conditions. Qualitative and quantitative differences in leaf chemistry are found in the genus Eucalyptus correlating with physiological adaptation to aridity.

  • • Here we investigate seasonal water relations of three field grown eucalypt species grown at a common site known to differ in their ability to accumulate the cyclic sugar alcohol, quercitol.

  • • We show that quercitol contributes significantly to osmotic relations in field grown trees of Eucalyptus melliodora but is present only in trace amounts in E. rubida and E. obliqua.

  • • Measured concentrations of quercitol account for the difference in osmotic potentials between species and can be interpreted as a mechanism for adaptation to low water availability.

Résumé

  • • Des altérations dans la chimie des plants soutiennent une série d’adaptations physiologiques à l’aridité. Des différences qualitatives et quantitatives dans la chimie des feuilles sont trouvées chez le genre Eucalyptus en corrélation avec les adaptations physiologiques à l’aridité.

  • • Ici, nous étudions les relations hydriques saisonnières de 3 espèces d’Eucalyptus de plein champ, poussant sur un site commun, connues pour être différentes au plan de leur capacité à accumuler le quercitol.

  • • Nous montrons que le quercitol contribue de manière significative aux relations osmotiques chez Eucalyptus melliodora mais est seulement présent à l’état de trace chez Eucalyptus rubida et Eucalyptus obliqua.

  • • Les concentrations de quercitol qui ont été mesurées rendent compte des différences de potentiel osmotique observées entre les espèces et peuvent être interprétées comme un mécanisme d’adaptation à la faible disponibilité en eau.

References

  • Adams M.A., 1996. Distribution of eucalypts in Australian landscapes: landforms, soils, fire and nutrition. In: Attiwill P.M., Adams M.A. (Eds.), Nutrition of eucalypts, CSIRO Australia, pp. 61–76.

    Google Scholar 

  • Adams M.A., Richter A., Hill A.K., and Colmer T.D., 2005. Salt tolerance in Eucalyptus spp.: identity and response of putative osmolytes. Plant Cell Environ. 28: 772–787.

    Article  CAS  Google Scholar 

  • Arndt S.K., Livesley S., Merchant A., Bleby T., and Grierson P., 2008. Quercitol and osmotic adaptation of field grown Eucalyptus under seasonal drought stress. Plant Cell Environ. 31: 915–924.

    Article  PubMed  CAS  Google Scholar 

  • Bell D.T., 1999. Australian trees for the rehabilitation of waterlogged and salinity-damaged landscapes. Aust. J. Bot. 47: 697–716.

    Article  Google Scholar 

  • Bell D.T. and Williams J.E., 1997. Eucalypt ecophysiology, In: Williams J., Woinarsky J. (Eds.), Eucalypt Ecology, Cambridge University Press, Cambridge.

    Google Scholar 

  • Callister A.N. and Adams M.A., 2006. Water stress impacts on respiratory rate, efficiency and substrates, in growing and mature foliage of Eucalyptus spp. Planta 224: 680–691.

    Article  PubMed  CAS  Google Scholar 

  • Callister A.N., Arndt S.K., and Adams M.A., 2006. Comparison of four methods for measuring osmotic potential in tree leaves. Physiol. Plant. 127: 383–392.

    Article  CAS  Google Scholar 

  • Clayton-Greene K.A., 1983. The tissue water relationships of Callitris columellaris, Eucalyptus melliodora and Eucalyptus microcarpa investigated using the pressure-volume technique. Oecologia 57: 368–373.

    Article  Google Scholar 

  • Flexas J. and Medrano H., 2002. Energy dissipation in C-3 plants under drought. Funct. Plant Biol. 29: 1209–1215.

    Article  CAS  Google Scholar 

  • Grieve C.M. and Shannon M.C., 1999. Ion accumulation and distribution in shoot components of saltstressed Eucalyptus clones. J. Am. Soc. Hortic. Sci. 124: 559–563.

    CAS  Google Scholar 

  • Hare P.D., Cress W.A., and Van Staden J., 1998. Dissecting the roles of osmolyte accumulation during stress. Plant Cell Environ. 21: 535–553.

    Article  CAS  Google Scholar 

  • Johansson S. and Tuomela K., 1996. Growth of 16 provenances of Eucalyptus microtheca in a regularly irrigated plantation in eastern Kenya. For. Ecol. Manage. 82: 11–18.

    Article  Google Scholar 

  • Keiper F.J., Chen D.M., and De Filippis L.F., 1998. Respiratory, photosynthetic and ultrastructural changes accompanying salt adaptation in culture of Eucalyptus microcorys. J. Plant Physiol. 152: 564–573.

    CAS  Google Scholar 

  • Koppenaal R.S., Tschaplinski T.J., and Colombo S.J., 1991. Carbohydrate accumulation and turgor maintenance in seedling shoots and roots of 2 boreal conifers subjected to water stress. Can. J. Bot./Rev. Can. Bot. 69: 2522–2528.

    Article  Google Scholar 

  • Lemcoff J.H., Guarnaschelli A.B., Garau A.M., Basciauli M.E., and Ghersa C.M., 1994. Osmotic adjustment and its use as a selection criterion in Eucalyptus seedlings. Can. J. For. Res. 24: 2404–2408.

    Article  Google Scholar 

  • Li C.Y., 1998. Some aspects of leaf water relations in four provenances of Eucalyptus microtheca seedlings. For. Ecol. Manage. 111: 303–308.

    Article  Google Scholar 

  • McManus M.T., Bieleski R.L., Caradus J.R., and Barker D.J., 2000. Pinitol accumulation in mature leaves of white clover in response to a water deficit. Environ. Exp. Bot. 43: 11–18.

    Article  CAS  Google Scholar 

  • Merchant A. and Adams M.A., 2005. Stable osmotica in Eucalyptus spathulata — responses to salt and water deficit stress. Funct. Plant Biol. 32: 797–805.

    Article  CAS  Google Scholar 

  • Merchant A., Adams M.A., Richter A., and Popp M., 2006. A metabolite approach provides functional links among eucalypt taxonomy, physiology and evolution. Phytochemistry 67: 402–408.

    Article  PubMed  CAS  Google Scholar 

  • Merchant A., Ladiges P.Y., and Adams M.A., 2007. Quercitol links the physiology, taxonomy and evolution of 279 eucalypt species. Glob. Ecol. Biogeogr. 16: 810–819.

    Article  Google Scholar 

  • Merchant A., S.K A., A.N C., and M.A A., 2007. Contrasting physiological responses to water deficit in six Eucalyptus species. Ann. Bot. 100: 1507–1515.

    Article  PubMed  Google Scholar 

  • Merchant A., Tausz M., Arndt S.K., and Adams M.A., 2006. Cyclitols and carbohydrates in leaves and roots of 13 Eucalyptus species suggest contrasting physiological responses to water deficit. Plant Cell Environ. 29: 2017–2029.

    Article  PubMed  CAS  Google Scholar 

  • Myers B.A., Duff G.A., Eamus D., Fordyce I.R., O’grady A., and Williams R.J., 1997. Seasonal variation in water relations of trees of differing leaf phenology in a wet-dry tropical savanna near Darwin, northern Australia. Aust. J. Bot. 45: 225–240.

    Article  Google Scholar 

  • Myers B.A. and Neales T.F., 1986. Osmotic adjustment, induced by drought, in seedlings of three Eucalyptus species. Austr. J. Plant Physiol. 13: 597–603.

    Article  Google Scholar 

  • Niknam S.R. and McComb J., 2000. Salt tolerance screening of selected Australian woody species — a review. For. Ecol. Manage. 139: 1–19.

    Article  Google Scholar 

  • Orthen B. and Popp M., 2000. Cyclitols as cryoprotectants for spinach and chickpea thylakoids. Environ. Exp. Bot. 44: 125–132.

    Article  PubMed  CAS  Google Scholar 

  • Orthen B., Popp M., and Smirnoff N., 1994. Hydroxyl radical scavenging properties of cyclitols, Proceedings of the Royal Society of Edinburgh Section B. Biological Sciences 102: 269–272.

    Google Scholar 

  • Passarinho J.A.P., Lamosa P., Baeta J.P., Santos H., and Ricardo C.P.P., 2006. Annual changes in the concentration of minerals and organic compounds of Quercus suber leaves. Physiol. Plant. 127: 100–110.

    Article  CAS  Google Scholar 

  • Paul M.J. and Cockburn W., 1989. Pinitol, a compatible solute in Mesembryanthemum crystallinum L? J. Exp. Bot. 40: 1093–1098.

    Article  CAS  Google Scholar 

  • Pita P. and Pardos J.A., 2001. Growth, leaf morphology, water use and tissue water relations of Eucalyptus globulus clones in response to water deficit. Tree Physiol. 21: 599–607.

    PubMed  CAS  Google Scholar 

  • Popp M., Lied W., Bierbaum U., Gross M., Grosse-Schulte T., Hams S., Oldenettel J., Schuler S., and Wiese J., 1997. Cyclitols-stable osmotica in trees. In: Rennenberg H., Eschrich W., and Ziegler H. (Eds.), Trees — Contributions to modern tree physiology, Backhuys Publ., Leiden, pp. 257–270.

    Google Scholar 

  • Prior L.D. and Eamus D., 1999. Seasonal changes in leaf water characteristics of Eucalyptus tetrodonta and Terminalia ferdinandiana saplings in a northern Australian savanna. Aust. J. Bot. 47: 587–599.

    Article  Google Scholar 

  • Rajam M.V., Dagar S., Waie B., Yadav J.S., Kumar P.A., Shoeb F., and Kumria R., 1998. Genetic engineering of polyamine and carbohydrate metabolism for osmotic stress tolerance in higher plants. J. Biosci. 23: 473–482.

    Article  CAS  Google Scholar 

  • Sacher R.F. and Staples R.C., 1985. Inositol and sugars in adaption of tomato to salt. Plant Physiol. 77: 206–210.

    Article  PubMed  CAS  Google Scholar 

  • Scholander P.F., Hammel E.D., Bradstreet E.D., and Hemmingsen E.A., 1965. Sap pressure in vascular plants, negative hydrostatic pressure can be measured in plants. Science 148: 339–346.

    Article  PubMed  CAS  Google Scholar 

  • Stoneman G.L., Turner N.C., and Dell B., 1994. Leaf growth, photosynthesis and tissue water relations of greenhouse-grown Eucalyptusmarginata seedlings in response to water deficits. Tree Physiol. 14: 633–646.

    PubMed  Google Scholar 

  • Sun D. and Dickinson G., 1993. Responses to salt stress of 16 Eucalyptus species, Grevillea-robusta, Lophostemon-confertus and Pinus-caribaea Var hondurensis. For. Ecol. Manage. 60: 1–14.

    Article  Google Scholar 

  • Tuomela K., 1997. Leaf water relations in six provenances of Eucalyptus microtheca: A greenhouse experiment. For. Ecol. Manage. 92: 1–10.

    Article  Google Scholar 

  • Turner N.C., 1988. Measurement of plant water status by the pressure chamber technique. Irrigation Science 9: 289–308.

    Article  Google Scholar 

  • Turner N.C. and Jones M.M., 1980. Turgor maintenance by osmotic adjustment: A review and evaluation. In: Turner N.C., Kramer P.J. (Eds.), Adaptation of plants to water and high temperature stress, Wiley-InterScience, New York, pp. 155–172.

    Google Scholar 

  • Turner N.C. and Long M.J., 1980. Errors arising from rapid water-loss in the measurement of leaf water potential by the pressure chamber technique. Austr. J. Plant Physiol. 7: 527–537.

    Article  Google Scholar 

  • Tyree M.T. and Hammel H.T., 1972. Measurement of turgor pressure and water relations of plants by pressure-bomb technique. J. Exp. Bot. 23: 267–282.

    Article  Google Scholar 

  • Van der Moezel P.G. and Bell D.T., 1987. Comparitive seedling salt tolerance of several Eucalyptus and Melaleuca species from Western Australia. Austr. For. Res. 17: 151–158.

    Google Scholar 

  • Van der Moezel P.G., Pearcepinto G.V.N., and Bell D.T., 1991. Screening for salt and waterlogging tolerance in Eucalyptus and Melaleuca species, For. Ecol. Manage. 40: 27–37.

    Article  Google Scholar 

  • White D.A., Beadle C.L., Sands P.J., Worledge D., and Honeysett J.L., 1999. Quantifying the effect of cumulative water stress on stomatal conductance of Eucalyptus globulus and Eucalyptus nitens: a phenomenological approach. Austr. J. Plant Physiol. 26: 17–27.

    Article  Google Scholar 

  • White D.A., Beadle C.L., and Worledge D., 1996. Leaf water relations of Eucalyptus globulus ssp. globulus and E. nitens: Seasonal, drought and species effects. Tree Physiol. 16: 469–476.

    PubMed  Google Scholar 

  • White D.A., Turner N.C., and Galbraith J.H., 2000. Leaf water relations and stomatal behavior of four allopatric Eucalyptus species planted in Mediterranean southwestern Australia. Tree Physiol. 20: 1157–1165.

    PubMed  Google Scholar 

  • Wingler A., 2002. The function of trehalose biosynthesis in plants. Phytochemistry 60: 437–440.

    Article  PubMed  CAS  Google Scholar 

  • Zohar Y. and Schiller G., 1998. Growth and water use by selected seed sources of Eucalyptus under high water table and saline conditions. Agric. Ecosyst. Environ. 69: 265–277.

    Article  Google Scholar 

  • Zubrinich T.M., Loveys B., Gallasch S., Seekamp J.V., and Tyerman S.D., 2000. Tolerance of salinized floodplain conditions in a naturally occurring Eucalyptus hybrid related to lowered plant water potential. Tree Physiol. 20: 953–963.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew Merchant.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Merchant, A., Arndt, S.K., Rowell, D.M. et al. Seasonal changes in carbohydrates, cyclitols, and water relations of 3 field grown Eucalyptus species from contrasting taxonomy on a common site. Ann. For. Sci. 67, 104 (2010). https://doi.org/10.1051/forest/2009085

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1051/forest/2009085

Keywords

Mots-clés