Skip to main content
  • Original Article
  • Published:

Competition for nitrogen by three sympatric species of Eucalyptus

Compétition pour l’azote par trois espèces d’Eucalyptus sympatriques

Abstract

  • • Nitrogen (N) exists in the soil in a variety of different forms and thus plants may avoid competition by taking up N as different chemical forms.

  • • This study examined the uptake of nitrate, ammonium and glycine by three co-occurring species of Eucalyptus (E. obliqua, E. radiata and E. rubida) from dry sclerophyll forest in south-eastern Australia. Species preference for N forms was determined by measuring uptake of glycine, nitrate and ammonium from 15N-labelled solutions containing equimolar 100 μmol L concentrations of all three N forms. KCl extracts were used to assess the relative abundance of the different forms of N in the soil’s exchangeable pool.

  • • KCl extracts of soil indicated that amino acids comprised 30–40% of the soluble non-protein N, while ammonium varied from 10–70% and nitrate from 5–70%. In all species, ammonium was the preferred source of nitrogen and was taken up 2.5–4.5 times faster than glycine, and 30–50 times faster than nitrate. Species did not differ in preference for N-forms (species*N-form interaction, not significant).

  • • This study indicates that nitrate, ammonium and amino acids are all present in soil, and thus there is the potential for niche differentiation based on chemical forms of N. However, there is no evidence that co-occurring Eucalyptus avoid competition for N by taking up different chemical forms.

Résumé

  • • L’azote (N) existe dans le sol sous une variété de formes différentes et donc les plantes peuvent éviter la concurrence en absorbant N depuis différentes formes chimiques.

  • • Cette étude a porté sur l’assimilation du nitrate, de l’ammonium et de la glycine par trois espèces d’eucalyptus co-occurentes (E. obliqua, E. radiata et E. rubida) de la forêt sclérophylle sèche dans le sud-est de l’Australie. La préférence des espèces pour les formes de N a été déterminée en mesurant l’absorption de la glycine, du nitrate et de l’ammonium à partir de solutions marquées 15N contenant des concentrations équimolaires de 100 μmol L de toutes les trois formes de N. Des extraits de KCl ont été utilisés pour évaluer l’abondance relative des différentes formes de N dans le pool échangeable du sol.

  • • Les extraits de KCl du sol ont indiqué que les acides aminés étaient constitués de 30−40 % de non protéines N solubles, tandis que l’ammonium variait de 10−70 % et les nitrates de 5−70 %. Chez toutes les espèces, l’ammonium était la source privilégiée d’azote et a été absorbé 2.5−4.5 fois plus vite que la glycine, et 30−50 fois plus vite que les nitrates. Les espèces ne diffèrent pas dans leur préférence pour les formes d’azote (interaction espèces*formes d’azote, non significative).

  • • Cette étude indique que les nitrates, l’ammonium et les acides aminés sont tous présents dans le sol, et donc il y a le potentiel pour la différenciation de niches, basées sur des formes chimiques de N. Toutefois, il n’existe aucune preuve que les espèces co-occurentes d’Eucalyptus évitent la compétition pour l’azote en absorbant différentes formes chimiques.

References

  • Attiwill P.M. and May B.M., 2001. Does nitrogen limit the growth of native eucalypt forests: some observations for mountain ash (Eucalyptus regnans). Mar. Freshw. Res. 52: 111–117.

    Article  CAS  Google Scholar 

  • Attiwill P.M., Polglase P.J., Weston C.J., and Adams M.A., 1996. Nutrient cycling in forests of south-eastern Australia. In: Attiwill P.M. and Adams M.A. (Eds.), Nutrition of eucalypts, CSIRO, Melbourne, pp. 191–228.

    Google Scholar 

  • Chapin F.S., Moilanen L., and Kielland K., 1993. Preferential use of organic nitrogen for growth by a nonmycorrhizal Arctic sedge. Nature 361: 150–153.

    Article  CAS  Google Scholar 

  • Gessler A. et al., 1998. Field and laboratory experiments on net uptake of nitrate and ammonium by the roots of spruce (Picea abies) and beech (Fagus sylvatica) trees. New Phytol. 138: 275–285.

    Article  CAS  Google Scholar 

  • Henry H.A.L. and Jefferies R.L., 2003. Interactions in the uptake of amino acids, ammonium and nitrate ions in the Arctic salt-marsh grass, Puccinellia phryganodes. Plant Cell Environ. 26: 419–428.

    Article  CAS  Google Scholar 

  • Hodge A., Robinson D., and Fitter A., 2000. Are microorganisms more effective than plants at competing for nitrogen? Trends Plant Sci. 5: 304–308.

    Article  PubMed  CAS  Google Scholar 

  • Hutchinson G.E., 1959. Homage to Santa-Rosalia or why are there so many kinds of animals. Am. Nat. 93: 145–159.

    Article  Google Scholar 

  • Jones D.L., Healey J.R., Willett V.B., Farrar J.F., and Hodge A., 2005. Dissolved organic nitrogen uptake by plants — an important N uptake pathway? Soil Biol. Biochem. 37: 413–423.

    Article  CAS  Google Scholar 

  • Kamminga-Van Wijk C. and Prins H.B.A., 1993. The Kinetics of NH +4 and NO 3 Uptake by Douglas-Fir from Single N-Solutions and from Solutions Containing Both NH +4 and NO 3 . Plant Soil 151: 91–96.

    Article  CAS  Google Scholar 

  • Koerselman W. and Meuleman A.F.M., 1996. The vegetation N:P ratio: A new tool to detect the nature of nutrient limitation. J. Appl. Ecol. 33: 1441–1450.

    Article  Google Scholar 

  • Kronzucker H.J., Siddiqi M.Y., and Glass A.D.M., 1997. Conifer root discrimination against soil nitrate and the ecology of forest succession. Nature 385: 59–61.

    Article  CAS  Google Scholar 

  • Lipson D.A., Raab T.K., Schmidt S.K., and Monson R.K., 1999. Variation in competitive abilities of plants and microbes for specific amino acids. Biol. Fertil. Soils 29: 257–261.

    Article  CAS  Google Scholar 

  • Lucash M.S., Eissenstat D.M., Joslin J.D., McFarlane K.J., and Yanai R.D., 2007. Estimating nutrient uptake by mature tree roots under field conditions: challenges and opportunities. Trees Struct. Funct. 21: 593–603.

    CAS  Google Scholar 

  • MacArthur R. and Levins R., 1967. Limiting similarity convergence and divergence of coexisting species. Am. Nat. 101: 377–385.

    Article  Google Scholar 

  • McKane R.B. et al., 2002. Resource-based niches provide a basis for plant species diversity and dominance in Arctic tundra. Nature 415: 68–71.

    Article  PubMed  CAS  Google Scholar 

  • Miller A.E. and Bowman W.D., 2003. Alpine plants show species-level differences in the uptake of organic and inorganic nitrogen. Plant Soil 250: 283–292.

    Article  CAS  Google Scholar 

  • Miller A.E., Bowman W.D., and Suding K.N., 2007. Plant uptake of inorganic and organic nitrogen: neighbor identity matters. Ecol. Lett. 88: 1832–1840.

    Google Scholar 

  • Näsholm T., Ekblad A., Nordin A., Giesler R., Högberg M., and Högberg P., 1998. Boreal forest plants take up organic nitrogen. Nature 392: 914–916.

    Article  Google Scholar 

  • Näsholm T., Huss-Danell K., and Hogberg P., 2000. Uptake of organic nitrogen in the field by four agriculturally important plant species. Ecology 81: 1155–1161.

    Google Scholar 

  • Parrish J.A.D. and Bazzaz F.A., 1976. Underground niche separation in successional plants. Ecology 57: 1281–1288.

    Article  Google Scholar 

  • Persson J., Gardestrom P., and Nasholm T., 2006. Uptake, metabolism and distribution of organic and inorganic nitrogen sources by Pinus sylvestris. J. Exp. Bot. 57: 2651–2659.

    Article  PubMed  CAS  Google Scholar 

  • Schimel J.P. and Bennett J., 2004. Nitrogen mineralization: challenges of a changing paradigm. Ecology 85: 591–602.

    Article  Google Scholar 

  • Schobert C. and Komor E., 1987. Amino Acid Uptake by Ricinus communis Roots — Characterization and Physiological Significance. Plant Cell Environ. 10: 493–500.

    Article  CAS  Google Scholar 

  • Stewart G.R., Pearson J., Kershaw J.L., and Clough E.C.M., 1989. Biochemical aspects of inorganic nitrogen assimilation by woody-plants. Ann. Sci. For. 46: S648-S653.

    Article  Google Scholar 

  • Tolhurst K. and Flinn D., 1992. Ecological impacts of fuel reduction burning in dry sclerophyll forest: first progress report. Department of Conservation and Environment, Melbourne.

    Google Scholar 

  • Tomkins I.B., Kellas J.D., Tolhurst K.G., and Oswin D.A., 1991. Effects of fire intensity on soil chemistry in a eucalypt forest. Aust. J. Soil Res. 29: 25–47.

    Article  CAS  Google Scholar 

  • Vitousek P.M. and Howarth R.W., 1991. Nitrogen limitation on land and in the sea — how can it occur. Biogeochemistry 13: 87–115.

    Article  Google Scholar 

  • Warren C.R., 2006. Potential organic and inorganic N uptake by six Eucalyptus species. Funct. Plant Biol. 33: 653–660.

    Article  CAS  Google Scholar 

  • Warren C.R., 2008. Rapid and sensitive quantification of amino acids in soil extracts by capillary electrophoresis with laser-induced fluorescence. Soil Biol. Biochem. 40: 916–923.

    Article  CAS  Google Scholar 

  • Warren C.R., 2009a. Uptake of inorganic and amino acid Nitrogen from soil by Eucalyptus regnans and Eucalyptus pauciflora seedlings. Tree Physiol. 29: 401–409.

    Article  PubMed  CAS  Google Scholar 

  • Warren C.R., 2009b. Why does temperature affect relative uptake rates of nitrate, ammonium and glycine: A test with Eucalyptus pauciflora. Soil Biol. Biochem. 41: 778–784.

    Article  CAS  Google Scholar 

  • Warren C.R. and Adams P.R., 2007. Uptake of nitrate, ammonium and glycine by plants of Tasmanian wet eucalypt forests. Tree Physiol. 27: 413–419.

    PubMed  CAS  Google Scholar 

  • Weigelt A., King R., Bol R., and Bardgett R.D., 2003. Inter-specific variability in organic nitrogen uptake of three temperate grassland species. J. Plant Nutrit. Soil Sci. 166: 606–611.

    Article  CAS  Google Scholar 

  • Weigelt A., Bol R., and Bardgett R.D., 2005. Preferential uptake of soil nitrogen forms by grassland plant species. Oecologia 142: 627–635.

    Article  PubMed  Google Scholar 

  • Wright D.E., 1962. Amino acid uptake by plant roots. Arch. Biochem. Biophys. 97: 174–180.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles R. Warren.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paulding, E.M., Baker, A.J.M. & Warren, C.R. Competition for nitrogen by three sympatric species of Eucalyptus . Ann. For. Sci. 67, 406 (2010). https://doi.org/10.1051/forest/2009126

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1051/forest/2009126

Keywords

Mots-clés