CC BY-NC-ND 4.0 · Ultrasound Int Open 2018; 04(03): E91-E98
DOI: 10.1055/a-0643-4430
Original Article
Eigentümer und Copyright ©Georg Thieme Verlag KG 2018

Evaluation of Peak Reflux Velocities with Vector Flow Imaging and Spectral Doppler Ultrasound in Varicose Veins

Thor Bechsgaard
1   Rigshospitalet, Radiology, Copenhagen, Denmark
,
Kristoffer Lindskov Hansen
2   Copenhagen University Hospital, Department of Diagnostic Radiology, Copenhagen, Denmark
,
Andreas Brandt
3   Copenhagen University Hospital Rigshospitalet, Department of Diagnostic Radiology, 2100 Copenhagen Oe, Denmark
,
Ramin Moshavegh
4   The Technical University of Denmark, Department of Electrical Engineering Center for Fast Ultrasound Imaging, 2800 Kgs. Lyngby, Denmark
,
Julie Lyng Forman
5   Copenhagen University, Department of Public Health Section of Biostatistics, 1014 Copenhagen K, Denmark
,
Pia Føgh
6   Copenhagen University Hospital Rigshospitalet, Department of Vascular Surgery Herlev & Gentofte Hospital, 2900 Hellerup, Denmark
,
Lotte Klitfod
6   Copenhagen University Hospital Rigshospitalet, Department of Vascular Surgery Herlev & Gentofte Hospital, 2900 Hellerup, Denmark
,
Niels Bækgaard
6   Copenhagen University Hospital Rigshospitalet, Department of Vascular Surgery Herlev & Gentofte Hospital, 2900 Hellerup, Denmark
,
Lars Lönn
7   Rigshospitalet, Copenhagen, DK, Radiology, Copenhagen, Denmark
,
Jørgen Arendt Jensen
8   Technical University of Denmark, Department of Electrical Engineering Center for Fast Ultrasound Imaging, 2800 Kgs. Lyngby, Denmark
,
Michael Bachmann Nielsen
1   Rigshospitalet, Radiology, Copenhagen, Denmark
› Author Affiliations
Further Information

Publication History

received 15 December 2017
revised 24 April 2018

accepted 17 May 2018

Publication Date:
28 September 2018 (online)

Abstract

Purpose Spectral Doppler ultrasound (SDUS) is used for quantifying reflux in lower extremity varicose veins. The technique is angle-dependent opposed to the new angle-independent Vector Flow Imaging (VFI) method. The aim of this study was to compare peak reflux velocities obtained with VFI and SDUS in patients with chronic venous disease, i. e., pathological retrograde blood flow caused by incompetent venous valves.

Materials and Methods 64 patients with chronic venous disease were scanned with VFI and SDUS in the great or the small saphenous vein, and reflux velocities were compared to three assessment tools for chronic venous disease. A flow rig was used to assess the accuracy and precision of the two methods.

Results The mean peak reflux velocities differed significantly (VFI: 47.4 cm/s vs. SDUS: 62.0 cm/s, p<0.001). No difference in absolute precision (p=0.18) nor relative precision (p=0.79) was found. No correlation to disease severity, according to assessment tools, was found for peak reflux velocities obtained with either method. In vitro, VFI was more accurate but equally precise when compared to SDUS.

Conclusion Both VFI and SDUS detected the pathologic retrograde flow in varicose veins but measured different reflux velocities with equal precision. VFI may play a role in evaluating venous disease in the future.

 
  • References

  • 1 Wittens C, Davies AH, Bækgaard N, Broholm R, Cavezzi A, Chastanet S, de Wolf M, Eggen C, Giannoukas A, Gohel M, Kakkos S, Lawson J, Noppeney T, Onida S, Pittaluga P, Thomis S, Toonder I, Vuylsteke M, Esvs Guidelines C, Kolh P, de Borst GJ, Chakfe N, Debus S, Hinchliffe R, Koncar I, Lindholt J, de Ceniga MV, Vermassen F, Verzini F, Document R, De Maeseneer MG, Blomgren L, Hartung O, Kalodiki E, Korten E, Lugli M, Naylor R, Nicolini P, Rosales A. Editor’s Choice - Management of Chronic Venous Disease: Clinical Practice Guidelines of the European Society for Vascular Surgery (ESVS). Eur J Vasc Endovasc Surg 2015; 49: 678-737
  • 2 Spinedi L, Broz P, Baldi T, Imfeld S, Staub D, Jaeger K, Aschwanden M, Uthoff H. Evaluation of Varicose Veins of the Lower Extremity: The Value of the Duplex Ultrasound (Part 1). Ultraschall der Medizin 2016; 37: 348-365
  • 3 Spinedi L, Aschwanden M, Broz P, Imfeld S, Baldi T, Jaeger K, Staub D, Uthoff H, Uthoff H. [Endoluminal Treatment of Varicose Veins: Value of Duplex Ultrasound (Part 2)]. Ultraschall Med 2017; 38: 14-32
  • 4 Konoeda H, Yamaki T, Hamahata A, Ochi M, Sakurai H. Quantification of Superficial Venous Reflux by Duplex Ultrasound—Role of Reflux Velocity in the Assessment the Clinical Stage of Chronic Venous Insufficiency. Ann Vasc Dis 2014; 7: 376-382
  • 5 Yamaki T, Nozaki M, Fujiwara O, Yoshida E. Comparative evaluation of duplex-derived parameters in patients with chronic venous insufficiency: Correlation with clinical manifestations. J Am Coll Surg 2002; 195: 822-830
  • 6 Chiesa R, Marone EM, Limoni C, Volonte M, Petrini O. Chronic venous disorders: Correlation between visible signs, symptoms, and presence of functional disease. J Vasc Surg 2007; 46: 322-330
  • 7 Park MY, Jung SE, Young Byun J, Kim JH, Joo GE. Effect of beam-flow angle on velocity measurements in modern Doppler ultrasound systems. AJR Am J Roentgenol 2012; 198: 1139-1143
  • 8 Jensen JA, Munk P. A new method for estimation of velocity vectors. IEEE Trans Ultrason Ferroelectr Freq Control 1998; 45: 837-851
  • 9 Møller Pedersen M, Pihl MJ, Haugaard P, Hansen KL, Lange T, Lönn L, Nielsen MB, Jensen JA. Novel flow quantification of the carotid bulb and the common carotid artery with vector flow ultrasound. Ultrasound Med Biol 2014; 40: 2700-2706
  • 10 Hansen PM, Olesen JB, Pihl MJ, Lange T, Heerwagen S, Pedersen MM, Rix M, Lönn L, Jensen JA, Nielsen MB. Volume Flow in Arteriovenous Fistulas Using Vector Velocity Ultrasound. Ultrasound Med Biol 2014; 40: 2707-2714
  • 11 Hansen KL, Udesen J, Gran F, Jensen JA, Bachmann Nielsen M. In-vivo examples of flow patterns with the fast vector velocity ultrasound method. Ultraschall Med 2009; 30: 471-477
  • 12 Hansen KL, Møller-Sørensen H, Kjærgaard J, Jensen MB, Lund JT, Pedersen MM, Lange T, Jensen JA, Nielsen MB. Intra-operative Vector Flow Imaging Using Ultrasound of the Ascending Aorta among 40 Patients with Normal, Stenotic and Replaced Aortic Valves. Ultrasound Med Biol 2016; 42: 2412-2422
  • 13 Brandt AH, Moshavegh R, Hansen KL, Bechsgaard T, Lönn L, Jensen JA, Nielsen MB. Vector flow imaging compared with pulse wave Doppler for estimation of peak velocity in the portal vein. Ultrasound Med Biol 2017; 44: 593-601
  • 14 Fadnes S, Wigen MS, Nyrnes SA, Lovstakken L. In vivo intracardiac vector velocity imaging using phased array transducers for pediatric cardiology. IEEE Trans Ultrason Ferroelectr Freq Control 2017; 64: 1318-1326
  • 15 Ekroll IK, Dahl T, Torp H, Løvstakken L. Combined vector velocity and spectral doppler imaging for improved imaging of complex blood flow in the carotid arteries. Ultrasound Med Biol 2014; 40: 1629-1640
  • 16 Faurie J, Baudet M, Assi KC, Auger D, Gilbert G, Tournoux F, Garcia D. Intracardiac Vortex Dynamics by High-Frame-Rate Doppler Vortography-In Vivo Comparison With Vector Flow Mapping and 4-D Flow MRI. IEEE Trans Ultrason Ferroelectr Freq Control 2017; 64: 424-432
  • 17 Goddi A, Bortolotto C, Fiorina I, Raciti MV, Fanizza M, Turpini E, Boffelli G, Calliada F. High-frame rate vector flow imaging of the carotid bifurcation. Insights Imaging 2017; 8: 319-328
  • 18 Fiorina I, Raciti MV, Goddi A, Cantisani V, Bortolotto C, Chu S, Calliada F. Ultrasound Vector Flow Imaging – could be a new tool in evaluation of arteriovenous fistulas for hemodialysis?. J Vasc Access 2017; 18: 284-289
  • 19 Yiu BYS, Lai SSM, Yu ACH. Vector Projectile Imaging: Time-resolved dynamic visualization of complex flow patterns. Ultrasound Med Biol 2014; 40: 2295-2309
  • 20 Bechsgaard T, Hansen KL, Brandt AH, Holbek S, Lönn L, Strandberg C, Bækgaard N, Nielsen MB, Jensen JA. Blood flow velocity in the popliteal vein using transverse oscillation ultrasound. Proc SPIE Med Imaging 2016; 9790: 1-8
  • 21 Bechsgaard T, Hansen KL, Brandt AH, Holbek S, Forman JL, Strandberg C, Lönn L, Bækgaard N, Jensen JA, Nielsen MB. Vector and Doppler ultrasound velocities evaluated in a flow phantom and the femoropopliteal vein. Ultrasound Med Biol 2017; 43: 2477-2487
  • 22 Dunmire B, Beach KW, Labs KH, Plett M, Strandness DE. Cross-beam vector Doppler ultrasound for angle-independent velocity measurements. Ultrasound Med Biol 2000; 26: 1213-1235
  • 23 Jensen J, Nikolov S, Yu ACH, Garcia D. Ultrasound Vector Flow Imaging: I: Sequentiel Systems. IEEE Trans Ultrason Ferroelectr Freq Control 2016; 63: 1704-1721
  • 24 Jensen J, Nikolov S, Yu ACH, Garcia D. Ultrasound Vector Flow Imaging: II: Parallel Systems. IEEE Trans Ultrason Ferroelectr Freq Control 2016; 3010: 1-1
  • 25 Hansen KL, Nielsen MB, Jensen JA. Vector velocity estimation of blood flow – A new application in medical ultrasound. Ultrasound 2017; 25: 189-199
  • 26 Goddi A, Fanizza M, Bortolotto C, Raciti MV, Fiorina I, He X, Du Y, Calliada F. Vector flow imaging techniques: An innovative ultrasonographic technique for the study of blood flow. J Clin Ultrasound 2017; 45: 582-588
  • 27 Au J, Hughson R, Yu A. Riding the plane wave: Considerations for in vivo study designs employing high frame rate ultrasound. Appl Sci 2018; 8: 1-12
  • 28 Yamaki T, Nozaki M, Sakurai H, Takeuchi M, Soejima K, Kono T. Comparison of manual compression release with distal pneumatic cuff maneuver in the ultrasonic evaluation of superficial venous insufficiency. Eur J Vasc Endovasc Surg 2006; 32: 462-467
  • 29 van Bemmelen PS, Bedford G, Beach K, Strandness DE. Quantitative segmental evaluation of venous valvular reflux with duplex ultrasound scanning. J Vasc Surg 1989; 10: 425-431
  • 30 Eberhardt RT, Raffetto JD. Chronic venous insufficiency. Circulation 2014; 130: 333-346
  • 31 Mitchell DG. Color Doppler imaging: Principles, limitations, and artifacts. Radiology 1990; 177: 1-10
  • 32 Rubens DJ, Bhatt S, Nedelka S, Cullinan J. Doppler Artifacts and Pitfalls. Radiol Clin North Am 2006; 44: 805-835
  • 33 Rumack CM, Levine D. Diagnostic Ultrasound. 5th Aufl Philadelphia: Elsevier; 2018
  • 34 Cavezzi A, Mosti G, Campana F, Tessari L, Bastiani L, Urso SU. Catheter Foam Sclerotherapy of the Great Saphenous Vein, with Perisaphenous Tumescence Infiltration and Saphenous Irrigation. Eur J Vasc Endovasc Surg 2017; 1-7
  • 35 Catarinella FS, Nieman FHM, Wittens CHA. An overview of the most commonly used venous quality of life and clinical outcome measurements. J Vasc Surg Venous Lymphat Disord 2015; 3: 333-340
  • 36 Vasquez MA, Rabe E, McLafferty RB, Shortell CK, Marston WA, Gillespie D, Meissner MH, Rutherford RB. Revision of the venous clinical severity score: Venous outcomes consensus statement: special communication of the American Venous Forum Ad Hoc Outcomes Working Group. J Vasc Surg 2010; 52: 1387-1396
  • 37 Hansen KL, Møller-Sørensen H, Pedersen MM, Hansen PM, Kjaergaard J, Lund JT, Nilsson JC, Jensen JA, Nielsen MB. First report on intraoperative vector flow imaging of the heart among patients with healthy and diseased aortic valves. Ultrasonics 2015; 56: 243-250
  • 38 Fadnes S, Nyrnes SA, Torp H, Løvstakken L. Shunt flow evaluation in congenital heart disease based on two-dimensional speckle tracking. Ultrasound Med Biol 2014; 40: 2379-2391
  • 39 Tortoli P, Lenge M, Righi D, Ciuti G, Liebgott HE, Ricci S. Comparison of carotid artery blood velocity measurements by vector and standard Doppler approaches. Ultrasound Med Biol 2015; 41: 1354-1362
  • 40 Hansen KL, Møller-Sørensen H, Kjærgaard J, Jensen MB, Lund JT, Pedersen MM, Olesen JB, Jensen JA, Nielsen MB. Vector flow imaging compared with conventional doppler ultrasound and thermodilution for estimation of blood flow in the ascending aorta. Ultrason Imaging 2017; 39: 3-18
  • 41 Normahani P, Aslam M, Martin G, Standfield N, Jaffer U. Variation in duplex peak systolic velocity measurement in a multi-site vascular service. Perfusion 2015; 30: 636-642
  • 42 Brandt AH, Hansen KL, Nielsen MB, Jensen JA. Velocity estimation of the main portal vein with Transverse Oscillation. Proc IEEE Ultrason Symp 2015; 1-4
  • 43 Ricci S, Vilkomerson D, Matera R, Tortoli P. Accurate blood peak velocity estimation using spectral models and vector doppler. IEEE Trans Ultrason Ferroelectr Freq Control 2015; 62: 686-696
  • 44 Lui EY, Steinman AH, Cobbold RS, Johnston KW. Human factors as a source of error in peak Doppler velocity measurement. J Vasc Surg 2005; 42: 972-979
  • 45 Steinman AH, Yu AC, Johnston KW, Cobbold RS. Effects of beam steering in pulsed-wave ultrasound velocity estimation. Ultrasound Med Biol 2005; 31: 1073-1082
  • 46 Steinman AH, Tavakkoli J, Myers JG, Cobbold RSC, Johnston KW. Sources of error in maximum velocity estimation using linear phased-array Doppler systems with steady flow. Ultrasound Med Biol 2001; 27: 655-664
  • 47 Beach KW, Bergelin RO, Leotta DF, Primozich JF, Sevareid PM, Stutzman ET, Zierler RE. Standardized ultrasound evaluation of carotid stenosis for clinical trials: University of Washington Ultrasound Reading Center. Cardiovasc Ultrasound 2010; 8: 39
  • 48 Hansen KL, Møller-Sørensen H, Kjærgaard J, Jensen MB, Jensen JA, Nielsen MB. Aortic valve stenosis increases helical flow and flow complexity: A study of intra-operative cardiac vector flow imaging. Ultrasound Med Biol 2017; 43: 1607-1617
  • 49 Holbek S, Ewertsen C, Bouzari H, Pihl MJ, Hansen KL, Stuart MB, Thomsen C, Nielsen MB, Jensen JA. Ultrasonic 3-D vector flow method for quantitative in vivo peak velocity and flow rate estimation. IEEE Trans Ultrason Ferroelectr Freq Control 2017; 64: 544-554
  • 50 Jiang J, Strother C, Johnson K, Baker S, Consigny D, Wieben O, Zagzebski J. Comparison of blood velocity measurements between ultrasound Doppler and accelerated phase-contrast MR angiography in small arteries with disturbed flow. Phys Med Biol 2011; 56: 1755-1773
  • 51 Markl M. et al. Comprehensive 4D velocity mapping of the heart and great vessels by cardiovascular magnetic resonance. J Cardiovasc Magn Reson 2011; 13: 7