Tierarztl Prax Ausg K Kleintiere Heimtiere 2020; 48(06): 433-440
DOI: 10.1055/a-1274-9290
Review Article

Progesterone receptor blockers: historical perspective, mode of function and insights into clinical and scientific applications

Progesteronrezeptorblocker: historische Perspektive, Funktionsweise und Einblicke in klinische und wissenschaftliche Anwendungen
Mariusz P. Kowalewski
1   Institute of Veterinary Anatomy, Vetsuisse-Faculty, University of Zurich, Zurich, Switzerland
,
Miguel Tavares Pereira
1   Institute of Veterinary Anatomy, Vetsuisse-Faculty, University of Zurich, Zurich, Switzerland
,
Paula Papa
1   Institute of Veterinary Anatomy, Vetsuisse-Faculty, University of Zurich, Zurich, Switzerland
,
Aykut Gram
2   Department of Histology and Embryology, Faculty of Veterinary Medicine, Erciyes University, Talas/Kayseri, Turkey
› Author Affiliations

Zusammenfassung

Antigestagene (Antiprogestine) sind funktionelle Antagonisten von Progesteron (P4), welche die Vermittlung der biologischen Wirkungen von P4 verhindern, indem sie entweder seine Produktion oder seine Funktionen unterdrücken. Unter Letzteren befinden sich Progesteronrezeptorantagonisten, die die Bindung von P4 an seinen nukleären Rezeptor PGR kompetitiv hemmen. Diese finden sowohl in der Human- als auch in der Veterinärmedizin Anwendung, in der Kleintiermedizin insbesondere zur Nidationsverhütung und zum Trächtigkeitsabbruch. Progesteronrezeptorantagonisten können entsprechend ihrer Wirkungsweise in 2 Klassen eingeteilt werden. Klasse-I-Antagonisten binden an den PGR ohne eine Bindung an Promotoren von Zielgenen zu induzieren (kompetitive Inhibitoren). Antigestagene der Klasse II, einschließlich des in der Veterinärmedizin verwendeten Aglepristons, binden an den PGR, aktivieren dessen Assoziation mit einem Promoter, interferieren jedoch mit den nachgeschalteten Signalkaskaden, z. B. durch Rekrutierung von Transkriptionsrepressoren. Sie wirken dabei als transdominante Repressoren, die negative Auswirkungen auf die Zielgenexpression haben. Wichtig für die experimentellen Wissenschaften ist, dass Antagonisten der Klasse II, als aktive Antagonisten, für ihre Wirkung nicht die Anwesenheit des natürlichen Liganden benötigen. Neben ihrer klinischen Anwendung werden Antigestagene in der Forschung zur Untersuchung P4-abhängiger physiologischer und pathologischer Prozesse eingesetzt. Dieser Artikel gibt einen Überblick über die Geschichte und den aktuellen Einsatz von Progesteronrezeptorblockern in der Veterinärmedizin und Forschung.

Abstract

Antigestagens (antiprogestins) are functional competitors of progesterone (P4) that prevent P4 from mediating its biological functions either by suppressing its production or blocking its function. Among the latter are progesterone antagonists, competitors of P4 binding to its nuclear receptor PGR, which have found application in both human and veterinary medicine, in particular in small animal practice for the prevention of nidation and the interruption of pregnancy. Depending on their mode of action, progesterone receptor antagonists can be divided into 2 classes. Class I antagonists bind to the PGR but fail to induce its binding to promoters of target genes (competitive inhibitors). Class II antigestagens, including aglepristone used in veterinary medicine, bind to the PGR, activate its association with a promoter, but interfere with the downstream signalling cascades, e. g., by recruiting transcriptional repressors. They act thereby as transdominant repressors exerting negative effects on target gene expression. Importantly for experimental sciences, as active antagonists, class II antagonists do not require the presence of the natural ligand for their action. Besides their clinical application, antigestagens are used in research for investigating P4-dependent physiological and pathological processes. Here an overview of the history and the current usage of progesterone receptor antagonists in veterinary medicine and research is presented.



Publication History

Received: 08 October 2020

Accepted: 20 October 2020

Article published online:
04 December 2020

© 2020. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Fagerstone KA, Miller LA, Killian G. et al. Review of issues concerning the use of reproductive inhibitors, with particular emphasis on resolving human-wildlife conflicts in North America. Integr Zool 2010; 5: 15-30 doi:10.1111/j.1749–4877.2010.00185.x
  • 2 Barnhart KT. Introduction: 50 years of evolution of contraceptive medicine. Fertil Steril 2016; 106: 1271-1272 doi:10.1016/j.fertnstert.2016.09.017
  • 3 Norman JE, Thong KJ, Rodger MW. et al. Medical abortion in women of less than or equal to 56 days amenorrhoea: a comparison between gemeprost (a PGE1 analogue) alone and mifepristone and gemeprost. Br J Obstet Gynaecol 1992; 99: 601-606 doi:10.1111/j.1471–0528.1992.tb13830.x
  • 4 Ulmann A, Teutsch G, Philibert D. Ru 486. Sci Am 1990; 262: 42-48 doi:10.1038/scientificamerican0690–42
  • 5 Philibert D, Deraedt R, Teusch G. RU 38486: A potent antiglucocorticoid in vitro (Abstr) 8th International Congress of Pharmacology. 1981
  • 6 Mahajan DK, London SN. Mifepristone (RU486): a review. Fertil Steril 1997; 68: 967-976 doi:10.1016/s0015–0282(97)00189–1
  • 7 Gagne D, Pons M, Philibert D. RU 38486: a potent antiglucocorticoid in vitro and in vivo. J Steroid Biochem 1985; 23: 247-251 doi:10.1016/0022–4731(85)90401–7
  • 8 Heikinheimo O, Kontula K, Croxatto H. et al. Plasma concentrations and receptor binding of RU 486 and its metabolites in humans. J Steroid Biochem 1987; 26: 279-284 doi:10.1016/0022–4731(87)90083–5
  • 9 Hoffmann B, Schuler G. Receptor blockers – general aspects with respect to their use in domestic animal reproduction. Anim Reprod Sci 2000; 60–61: 295-312
  • 10 Cameron IT, Michie AF, Baird DT. Therapeutic abortion in early pregnancy with antiprogestogen RU486 alone or in combination with prostaglandin analogue (gemeprost). Contraception 1986; 34: 459-468 doi:10.1016/0010–7824(86)90055–7
  • 11 Schreiber JR, Hsueh AJ, Baulieu EE. Binding of the anti-progestin RU-486 to rat ovary steroid receptors. Contraception 1983; 28: 77-85 doi:10.1016/s0010–7824(83)80008–0
  • 12 Sharts-Engel NC. The RU 486 story: the French experience. MCN Am J Matern Child Nurs 1992; 17: 56 doi:10.1097/00005721–199201000–00019
  • 13 Bygdeman M, Swahn ML. Progesterone receptor blockage. Effect on uterine contractility and early pregnancy. Contraception 1985; 32: 45-51 doi:10.1016/0010–7824(85)90115–5
  • 14 Baulieu EE. Contragestion by antiprogestin: a new approach to human fertility control. Ciba Found Symp 1985; 115: 192-210 doi:10.1002/9780470720967.ch15
  • 15 Sitruk-Ware R. Mifepristone and misoprostol sequential regimen side effects, complications and safety. Contraception 2006; 74: 48-55 doi:10.1016/j.contraception.2006.03.016
  • 16 Urquhart DR, Templeton AA. Mifepristone (RU 486) and second-trimester termination. Lancet 1987; 2: 1405 doi:10.1016/s0140–6736(87)91302-x
  • 17 Swahn ML, Gemzell K, Bygdeman M. Contraception with mifepristone. Lancet 1991; 338: 942-943 doi:10.1016/0140–6736(91)91805–5
  • 18 Glasier A, Thong KJ, Dewar M. et al. Mifepristone (RU 486) compared with high-dose estrogen and progestogen for emergency postcoital contraception. N Engl J Med 1992; 327: 1041-1044 doi:10.1056/NEJM199210083271501
  • 19 Johannisson E, Oberholzer M, Swahn ML. et al. Vascular changes in the human endometrium following the administration of the progesterone antagonist RU 486. Contraception 1989; 39: 103-117 doi:10.1016/0010–7824(89)90019-x
  • 20 Gopalkrishnan K, Katkam RR, Sachdeva G. et al. Effects of an antiprogestin onapristone on the endometrium of bonnet monkeys: morphometric and ultrastructural studies. Biol Reprod 2003; 68: 1959-1967 doi:10.1095/biolreprod.102.007963
  • 21 Wiechert R, Neef G. Synthesis of antiprogestational steroids. J Steroid Biochem 1987; 27: 851-858 doi:10.1016/0022–4731(87)90159–2
  • 22 Zakula Z, Moudgil VK. Interaction of rat liver glucocorticoid receptor with a newly synthesized antisteroid ZK98299. Biochim Biophys Acta 1991; 1092: 188-195 doi:10.1016/0167–4889(91)90156-r
  • 23 Robertson JF, Willsher PC, Winterbottom L. et al. Onapristone, a progesterone receptor antagonist, as first-line therapy in primary breast cancer. Eur J Cancer 1999; 35: 214-218 doi:10.1016/s0959–8049(98)00388–8
  • 24 Hoffmann B, Goericke-Pesch S, Schuler G. Antiprogestins: high potential compounds for use in veterinary research and therapy: a review. Eurasian J Vet Sci 2011; 27: 77-86
  • 25 Gogny A, Fieni F. Aglepristone: A review on its clinical use in animals. Theriogenology 2016; 85: 555-566 doi:10.1016/j.theriogenology.2015.10.010
  • 26 Fieni F, Teinturier D, Bruyas JF. et al. Etude clinique d’une anti-hormone pour provoquer l’avortement chez la chienne: l’aglepristone. Rec Med Vet 1996; 172: 359-367
  • 27 Shenavai S, Preissing S, Hoffmann B. et al. Investigations into the mechanisms controlling parturition in cattle. Reproduction 2012; 144: 279-292 doi:10.1530/REP-11–0471
  • 28 Shenavai S, Hoffmann B, Dilly M. et al. Use of the progesterone (P4) receptor antagonist aglepristone to characterize the role of P4 withdrawal for parturition and placental release in cows. Reproduction 2010; 140: 623-632 doi:10.1530/REP-10–0182
  • 29 Concannon PW, Yeager A, Frank D. et al. Termination of pregnancy and induction of premature luteolysis by the antiprogestagen, mifepristone, in dogs. J Reprod Fertil 1990; 88: 99-104 doi:10.1530/jrf.0.0880099
  • 30 Sankai T, Endo T, Kanayama K. et al. Antiprogesterone compound, RU486 administration to terminate pregnancy in dogs and cats. J Vet Med Sci 1991; 53: 1069-1070 doi:10.1292/jvms.53.1069
  • 31 Tsujii T, Kambegawa A, Kobayashi M. et al. Contragestive effects of the antigestagenic agent, RU486, in rats and rabbits. Asia Oceania J Obstet Gynaecol 1989; 15: 169-173 doi:10.1111/j.1447–0756.1989.tb00172.x
  • 32 Guil-Luna S, Hellmen E, Sanchez-Cespedes R. et al. The antiprogestins mifepristone and onapristone reduce cell proliferation in the canine mammary carcinoma cell line CMT-U27. Histol Histopathol 2014; 29: 949-955 doi:10.14670/HH-29.949
  • 33 Kastner P, Krust A, Turcotte B. et al. Two distinct estrogen-regulated promoters generate transcripts encoding the two functionally different human progesterone receptor forms A and B. Embo J 1990; 9: 1603-1614
  • 34 Conneely OM, Kettelberger DM, Tsai MJ. et al. The chicken progesterone receptor A and B isoforms are products of an alternate translation initiation event. J Biol Chem 1989; 264: 14062-14064
  • 35 Wei LL, Gonzalez-Aller C, Wood WM. et al. 5’-Heterogeneity in human progesterone receptor transcripts predicts a new amino-terminal truncated “C”-receptor and unique A-receptor messages. Mol Endocrinol 1990; 4: 1833-1840 doi:10.1210/mend-4–12–1833
  • 36 Scarpin KM, Graham JD, Mote PA. et al. Progesterone action in human tissues: regulation by progesterone receptor (PR) isoform expression, nuclear positioning and coregulator expression. Nucl Recept Signal 2009; 7: e009 doi:10.1621/nrs.07009
  • 37 Wetendorf M, DeMayo FJ. Progesterone receptor signaling in the initiation of pregnancy and preservation of a healthy uterus. Int J Dev Biol 2014; 58: 95-106 doi:10.1387/ijdb.140069mw
  • 38 Giangrande PH, Pollio G, McDonnell DP. Mapping and characterization of the functional domains responsible for the differential activity of the A and B isoforms of the human progesterone receptor. J Biol Chem 1997; 272: 32889-32900 doi:10.1074/jbc.272.52.32889
  • 39 Tung L, Abdel-Hafiz H, Shen T. et al. Progesterone receptors (PR)-B and -A regulate transcription by different mechanisms: AF-3 exerts regulatory control over coactivator binding to PR-B. Mol Endocrinol 2006; 20: 2656-2670 doi:10.1210/me.2006–0105
  • 40 Mulac-Jericevic B, Conneely OM. Reproductive tissue-selective actions of progesterone receptors. Ernst Schering Res Found Workshop 2005; 19-37 doi:10.1007/3–540–27147–3_2
  • 41 Richer JK, Jacobsen BM, Manning NG. et al. Differential gene regulation by the two progesterone receptor isoforms in human breast cancer cells. J Biol Chem 2002; 277: 5209-5218 doi:10.1074/jbc.M110090200
  • 42 Graham JD, Yager ML, Hill HD. et al. Altered progesterone receptor isoform expression remodels progestin responsiveness of breast cancer cells. Mol Endocrinol 2005; 19: 2713-2735 doi:10.1210/me.2005–0126
  • 43 Pieber D, Allport VC, Bennett PR. Progesterone receptor isoform A inhibits isoform B-mediated transactiwvation in human amnion. Eur J Pharmacol 2001; 427: 7-11 doi:10.1016/s0014–2999(01)01189-x
  • 44 Pieber D, Allport VC, Hills F. et al. Interactions between progesterone receptor isoforms in myometrial cells in human labour. Mol Hum Reprod 2001; 7: 875-879 doi:10.1093/molehr/7.9.875
  • 45 Dressing GE, Goldberg JE, Charles NJ. et al. Membrane progesterone receptor expression in mammalian tissues: a review of regulation and physiological implications. Steroids 2011; 76: 11-17 doi:10.1016/j.steroids.2010.09.006
  • 46 Evans RM. The steroid and thyroid hormone receptor superfamily. Science 1988; 240: 889-895 doi:10.1126/science.3283939
  • 47 Philibert D, Costerousse G, Gaillardmoguilewsky M. et al. From Ru-38486 Towards Dissociated Antiglucocorticoid and Antiprogesterone. Front Hormone Res 1991; 19: 1-17
  • 48 Ojasoo T, Dore JC, Gilbert J. et al. Binding of steroids to the progestin and glucocorticoid receptors analyzed by correspondence analysis. J Med Chem 1988; 31: 1160-1169 doi:10.1021/jm00401a015
  • 49 Hoffmann B, Schuler G. Grundlagen der Wirkungsweise und sich daraus ergebende klinische Anwendungen von Antigestagenen bei Hund und Katze. Tierarztl Prax 2006; 34: 399-408
  • 50 Bocquel MT, Ji J, Ylikomi T. et al. Type II antagonists impair the DNA binding of steroid hormone receptors without affecting dimerization. J Steroid Biochem Mol Biol 1993; 45: 205-215 doi:10.1016/0960–0760(93)90334-s
  • 51 Klein-Hitpass L, Cato AC, Henderson D. et al. Two types of antiprogestins identified by their differential action in transcriptionally active extracts from T47D cells. Nucleic Acids Res 1991; 19: 1227-1234 doi:10.1093/nar/19.6.1227
  • 52 Michna H, Nishino Y, Parczyk K. et al. Antigestagens: Past, Present, and Future. In: Pavlik EJ. ed. Estrogens, Progestins, and Their Anatagonists. Hormones in Health and Desease. Boston: Birkhäuser; 1996: 297-319
  • 53 Chwalisz K. The use of progesterone antagonists for cervical ripening and as an adjunct to labour and delivery. Hum Reprod 1994; 9 (Suppl. 01) 131-161 doi:10.1093/humrep/9.suppl_1.131
  • 54 Leonhardt SA, Edwards DP. Mechanism of action of progesterone antagonists. Exp Biol Med (Maywood) 2002; 227: 969-980
  • 55 Jackson TA, Richer JK, Bain DL. et al. The partial agonist activity of antagonist-occupied steroid receptors is controlled by a novel hinge domain-binding coactivator L7/SPA and the corepressors N-CoR or SMRT. Mol Endocrinol 1997; 11: 693-705 doi:10.1210/mend.11.6.0004
  • 56 Zhang S, Jonklaas J, Danielsen M. The glucocorticoid agonist activities of mifepristone (RU486) and progesterone are dependent on glucocorticoid receptor levels but not on EC50 values. Steroids 2007; 72: 600-608 doi:10.1016/j.steroids.2007.03.012
  • 57 Arkaravichien W, Kendle KE. Uterine contractile activity in rats induced by mifepristone (RU 486) in relation to changes in concentrations of prostaglandins E-2 and F-2 alpha. J Reprod Fertil 1992; 94: 115-120 doi:10.1530/jrf.0.0940115
  • 58 Hoffmann B, Gerres S. Modellversuch zur Darstellung der antigestagenen Wirkung von RU 38486 bei der Hündin. Wien Tierärztl Mschr 1989; 76: 10-14
  • 59 Baan M, Taverne MA, Kooistra HS. et al. Induction of parturition in the bitch with the progesterone-receptor blocker aglepristone. Theriogenology 2005; 63: 1958-1972 doi:10.1016/j.theriogenology.2004.09.008
  • 60 Zatta S, Rehrauer H, Gram A. et al. Transcriptome analysis reveals differences in mechanisms regulating cessation of luteal function in pregnant and non-pregnant dogs. BMC Genomics 2017; 18: 757 doi:10.1186/s12864–017–4084–9
  • 61 Nowak M, Rehrauer H, Ay SS. et al. Gene expression profiling of the canine placenta during normal and antigestagen-induced luteolysis. Gen Comp Endocrinol 2019; 282: 113194 doi:10.1016/j.ygcen.2019.05.019
  • 62 Concannon PW. Reproductive cycles of the domestic bitch. Anim Reprod Sci 2011; 124: 200-210 doi:10.1016/j.anireprosci.2010.08.028
  • 63 Hoffmann B, Hoveler R, Nohr B. et al. Investigations on hormonal changes around parturition in the dog and the occurrence of pregnancy-specific non conjugated oestrogens. Exp Clin Endocrinol 1994; 102: 185-189 doi:10.1055/s-0029–1211280
  • 64 Kowalewski MP. Selected Comparative Aspects of Canine Female Reproductive Physiology. In: Encyclopedia of Reproduction. 2nd ed.. Skinner MK. ed. United Kingdom: Academic Press, Elsevier; 2018
  • 65 Kowalewski MP, Beceriklisoy HB, Pfarrer C. et al. Canine placenta: a source of prepartal prostaglandins during normal and antiprogestin-induced parturition. Reproduction 2010; 139: 655-664 doi:10.1530/REP-09–0140
  • 66 Kowalewski MP, Beceriklisoy HB, Aslan S. et al. Time related changes in luteal prostaglandin synthesis and steroidogenic capacity during pregnancy, normal and antiprogestin induced luteolysis in the bitch. Anim Reprod Sci 2009; 116: 129-138 doi:10.1016/j.anireprosci.2008.12.011
  • 67 Kowalewski MP, Schuler G, Taubert A. et al. Expression of cyclooxygenase 1 and 2 in the canine corpus luteum during diestrus. Theriogenology 2006; 66: 1423-1430 doi:10.1016/j.theriogenology.2006.01.039
  • 68 Romagnoli SE, Camillo F, Novellini S. et al. Luteolytic effects of prostaglandin F2alpha on day 8 to 19 corpora lutea in the bitch. Theriogenology 1996; 45: 397-403
  • 69 Romagnoli SE, Cela M, Camillo F. Use of prostaglandin F2 alpha for early pregnancy termination in the mismated bitch. Vet Clin North Am Small Anim Pract 1991; 21: 487-499
  • 70 Kowalewski MP. Luteal regression vs. prepartum luteolysis: regulatory mechanisms governing canine corpus luteum function. Reprod Biol 2014; 14: 89-102 doi:10.1016/j.repbio.2013.11.004
  • 71 Romagnoli SE. Practical use of hormones in small animal reproduction. Rev Bras Reprod Anim 2017; 41: 59-67 https://pdfs.semanticscholar.org/46dc/38727fb846432a745d2643d7a81feadcedcd.pdf?_ga=2.152022138.296075922.1598450524–118700583.1598450524
  • 72 Kowalewski MP. Regulation of Corpus Luteum Function in the Domestic Dog (Canis familiaris) and Comparative Aspects of Luteal Function in the Domestic Cat (Felis catus). In: Meidan R. ed. The Life Cycle of the Corpus luteum. Switzerland: Springer International Publishing; 2017
  • 73 Onclin K, Verstegen JP. In vivo investigation of luteal function in dogs: effects of cabergoline, a dopamine agonist, and prolactin on progesterone secretion during mid-pregnancy and -diestrus. Domest Anim Endocrinol 1997; 14: 25-38 doi:S0739724096000938 [pii]
  • 74 Kanca H, Karakas K. Effectiveness of aglepristone at lower-than-standard doses in prevention of pregnancy in mismated bitches. Kafkas Universitesi Veteriner Fakultesi Dergisi 2012; 29: 517-521 doi:10.9775/kvfd.2012.5936
  • 75 Agaoglu AR, Aslan S, Emre B. et al. Clinical evaluation of different applications of misoprostol and aglepristone for induction of abortion in bitches. Theriogenology 2014; 81: 947-951 doi:10.1016/j.theriogenology.2014.01.017
  • 76 Reynaud K, Saint-Dizier M, Tahir MZ. et al. Progesterone plays a critical role in canine oocyte maturation and fertilization. Biol Reprod 2015; 93: 87 doi:10.1095/biolreprod.115.130955
  • 77 Fieni F, Bruyas JF, Battut I. et al. Clinical Use of Anti-Progestins in the Bitch. In: Concannon PW, England G, Verstegen J. ed. Recent Advances in Small Animall Reproduction. Ithaca, New York, USA: International Veterinary Information Service; www.ivis.org 2001
  • 78 Riesenbeck A, Klein R, Hoffmann B. et al. Geburtsinduktion infolge verlängerter Gravidität bei einer Hündin unter Verwendung eines Antigestagens. Tierarztl Prax 1999; 27: 186-188
  • 79 Roos J, Maenhoudt C, Zilberstein L. et al. Neonatal puppy survival after planned caesarean section in the bitch using aglepristone as a primer: A retrospective study on 74 cases. Reprod Domest Anim 2018; 53 (Suppl. 03) 85-95 doi:10.1111/rda.13353
  • 80 Breitkopf M, Hoffmann B, Bostedt H. Treatment of pyometra (cystic endometrial hyperplasia) in bitches with an antiprogestin. J Reprod Fertil Suppl 1997; 51: 327-331
  • 81 Fieni F. Clinical evaluation of the use of aglepristone, with or without cloprostenol, to treat cystic endometrial hyperplasia-pyometra complex in bitches. Theriogenology 2006; 66: 1550-1556 doi:10.1016/j.theriogenology.2006.02.009
  • 82 Hagman R. Pyometra in Small Animals. Vet Clin North Am Small Anim Pract 2018; 48: 639-661 doi:10.1016/j.cvsm.2018.03.001
  • 83 Melandri M, Veronesi MC, Pisu MC. et al. Fertility outcome after medically treated pyometra in dogs. J Vet Sci 2019; 20: e39 doi:10.4142/jvs.2019.20.e39
  • 84 Hoffmann B, Lemmer W, Bostedt H. et al. Die Anwendung des Antigestagens Aglepristone zur konservativen Behandlung der Pyometra bei der Hündin. Tierarztl Prax 2000; 28: 323-329
  • 85 Jurka P, Max A, Hawrynska K. et al. Age-related pregnancy results and further examination of bitches after aglepristone treatment of pyometra. Reprod Domest Anim 2010; 45: 525-529 doi:10.1111/j.1439–0531.2008.01288.x
  • 86 Rollon E, Millan Y, de las Mulas JM. Effects of aglepristone, a progesterone receptor antagonist, in a dog with a vaginal fibroma. J Small Anim Pract 2008; 49: 41-43 doi:10.1111/j.1748–5827.2007.00424.x
  • 87 Guil-Luna S, Millan Y, De Andres J. et al. Prognostic impact of neoadjuvant aglepristone treatment in clinicopathological parameters of progesterone receptor-positive canine mammary carcinomas. Vet Comp Oncol 2017; 15: 391-399 doi:10.1111/vco.12175
  • 88 Bhatti SF, Duchateau L, Okkens AC. et al. Treatment of growth hormone excess in dogs with the progesterone receptor antagonist aglepristone. Theriogenology 2006; 66: 797-803 doi:10.1016/j.theriogenology.2006.01.052
  • 89 Bigliardi E, Bresciani C, Callegari D. et al. Use of aglepristone for the treatment of P4 induced insulin resistance in dogs. J Vet Sci 2014; 15: 267-271 doi:10.4142/jvs.2014.15.2.267
  • 90 Siemieniuch MJ, Jursza E, Szostek AZ. et al. Steroidogenic capacity of the placenta as a supplemental source of progesterone during pregnancy in domestic cats. Reprod Biol Endocrinol 2012; 10: 89 doi:10.1186/1477–7827–10–89
  • 91 Verstegen JP, Onclin K, Silva LD. et al. Abortion induction in the cat using prostaglandin F2 alpha and a new anti-prolactinic agent, cabergoline. J Reprod Fertil Suppl 1993; 47: 411-417
  • 92 Erunal-Maral N, Aslan S, Findik M. et al. Induction of abortion in queens by administration of cabergoline (Galastop) solely or in combination with the PGF2alpha analogue Alfaprostol (Gabbrostim). Theriogenology 2004; 61: 1471-1475 doi:10.1016/j.theriogenology.2003.08.014
  • 93 Fieni F, Martal J, Marnet PG. et al. Clinical, biological and hormonal study of mid-pregnancy termination in cats with aglepristone. Theriogenology 2006; 66: 1721-1728 doi:10.1016/j.theriogenology.2006.02.026
  • 94 Georgiev P, Bostedt H, Goericke-Pesch S. et al. Induction of abortion with aglepristone in cats on day 45 and 46 after mating. Reprod Domest Anim 2010; 45: e161-167 doi:10.1111/j.1439–0531.2009.01540.x
  • 95 Georgiev P, Wehrend A. Mid-gestation pregnancy termination by the progesterone antagonist aglepristone in queens. Theriogenology 2006; 65: 1401-1406 doi:10.1016/j.theriogenology.2005.08.011
  • 96 Goericke-Pesch S, Georgiev P, Wehrend A. Prevention of pregnancy in cats using aglepristone on days 5 and 6 after mating. Theriogenology 2010; 74: 304-310 doi:10.1016/j.theriogenology.2010.02.014
  • 97 Payan-Carreira R. Feline Mammary Fibroepithelial Hyperplasia: A Clinical Approach. In: Payan-Carreira R, ed. Insights from Veterinary Medicine. InTech 2013; 215-232 doi: 10.5772/55550
  • 98 Georgiev P, Wehrend A. Mukometra bei der Katze – fünf Fälle. Tierarztl Prax, Ausg Kleintiere Heimtiere 2005; 33: 112-114 doi:10.1055/s-0037–1622459
  • 99 Nak D, Nak Y, Tuna B. Follow-up examinations after medical treatment of pyometra in cats with the progesterone-antagonist aglepristone. J Feline Med Surg 2009; 11: 499-502 doi:10.1016/j.jfms.2008.09.006
  • 100 Pires M, Vilhena H, Miranda S. et al. Proliferative Endometrial Lesions Hidden behind the Feline Pyometra. In: Insights from Veterinary Medicine. IntechOpen 2016; 227-242 doi:10.5772/62788
  • 101 Breukelman SP, Szenci O, Beckers JF. et al. Ultrasonographic appearance of the conceptus, fetal heart rate and profiles of pregnancy-associated glycoproteins (PAG) and prostaglandin F2alpha-metabolite (PGF2alpha-metabolite) after induction of fetal death with aglepristone during early gestation in cattle. Theriogenology 2005; 64: 917-933 doi:10.1016/j.theriogenology.2004.12.016
  • 102 von Hof J, Sprekeler N, Schuler G. et al. Uterine and placental expression of HPGD in cows during pregnancy and release of fetal membranes. Prostaglandins Other Lipid Mediat 2017; 128–129: 17-26 doi:10.1016/j.prostaglandins.2016.12.003
  • 103 Batista M, Reyes R, Santana M. et al. Induction of parturition with aglepristone in the Majorera goat. Reprod Domest Anim 2011; 46: 882-888 doi:10.1111/j.1439–0531.2011.01759.x
  • 104 Ozalp GR, Yavuz A, Seker I. et al. Evaluation of an alternative treatment protocol by aglepristone to induce parturition in ewes with an experimental model of early pregnancy toxemia. Theriogenology 2018; 116: 112-118 doi:10.1016/j.theriogenology.2018.04.032
  • 105 Ozalp RG, Yavuz A, Orman A. et al. Parturition induction in ewes by a progesterone receptor blocker, aglepristone, and subsequent neonatal survival: Preliminary results. Theriogenology 2017; 87: 141-147 doi:10.1016/j.theriogenology.2016.08.016
  • 106 Salci ESO, Demirbilek SK, Gunes N. et al. Comparison of the endocrinological and immunological results of different induction of parturition methods in ewes. Tierarztl Prax Ausg Grosstiere Nutztiere 2018; 46: 22-28 doi:10.15653/TPG-170136
  • 107 Ozalp GR, Caliskan C, Seyrek-Intas K. et al. Effects of the progesterone receptor antagonist aglepristone on implantation administered on days 6 and 7 after mating in rabbits. Reprod Domest Anim 2010; 45: 505-508 doi:10.1111/j.1439–0531.2008.01282.x
  • 108 Ozalp GR, Seyrek-Intas K, Caliskan C. et al. Mid-gestation pregnancy termination in rabbits by the progesterone antagonist aglepristone. Theriogenology 2008; 69: 1056-1060 doi:10.1016/j.theriogenology.2008.01.016
  • 109 Ozalp GR, Temizel EM, Ozocak-Batmaz E. Clinical, ultrasonography and haematology of aglepristone-induced mid-gestation pregnancy terminations in rabbits. J S Afr Vet Assoc 2013; 84: E1-5 doi:10.4102/jsava.v84i1.998
  • 110 Oguejiofor CF, Ochiogu IS. Prolonged interval before conception following aglepristone-induced abortion in albino rats. Anim Reprod 2013; 10: 41-44
  • 111 Pisu MC, Andolfatto A, Veronesi MC. Pyometra in a six-month-old nulliparous golden hamster (Mesocricetus auratus) treated with aglepristone. Vet Q 2012; 32: 179-181 doi:10.1080/01652176.2012.744145
  • 112 von Engelhardt AB. Treatment of the metritis pyometra complex with aglepristone in a guinea pig. Prakt Tierarzt 2006; 87: 14-17
  • 113 Gram A, Buchler U, Boos A. et al. Biosynthesis and degradation of canine placental prostaglandins: prepartum changes in expression and function of prostaglandin F2alpha-synthase (PGFS, AKR1C3) and 15-hydroxyprostaglandin dehydrogenase (HPGD). Biol Reprod 2013; 89: 2 doi:10.1095/biolreprod.113.109918
  • 114 Nohr B, Hoffmann B, Steinetz BE. Investigation of the endocrine control of parturition in the dog by application of an antigestagen. J Reprod Fertil Suppl 1993; 47: 542-543
  • 115 Steiger K, Politt E, Hoeftmann T. et al. Morphology of canine placental sites after induced embryonic or fetal death. Theriogenology 2006; 66: 1709-1714 doi:10.1016/j.theriogenology.2006.01.046
  • 116 Kanca H, Walter I, Miller I. et al. Expression and activity of matrix metalloproteinases in the uterus of bitches after spontaneous and induced abortion. Reprod Domest Anim 2011; 46: 197-204 doi:10.1111/j.1439–0531.2010.01619.x
  • 117 Kanca H, Walter I, Schafer-Somi S. et al. Induction of abortion with aglepristone significantly changed the expression of progesterone and estrogen receptors in canine endometrial stromal cells. Theriogenology 2008; 70: 1439-1448 doi:10.1016/j.theriogenology.2008.04.045
  • 118 Kowalewski MP. Endocrine and molecular control of luteal and placental function in dogs: a review. Reproduction in domestic animals 2012; 47 (Suppl. 06) 19-24 doi:10.1111/rda.12036
  • 119 Kowalewski MP, Gram A, Kautz E. et al. The dog: nonconformist, not only in maternal recognition signaling. Adv Anat, Embryol Cell Biol 2015; 216: 215-237
  • 120 Kowalewski MP, Tavares Pereira M, Kazemian A. Canine conceptus-maternal communication during maintenance and termination of pregnancy, including the role of species-specific decidualization. Theriogenology 2020; 150: 329-338 doi:10.1016/j.theriogenology.2020.01.082
  • 121 Kaya D, Kucukaslan I, Agaoglu AR. et al. The effects of aglepristone alone and in combination with cloprostenol on hormonal values during termination of mid-term pregnancy in bitches. Anim Reprod Sci 2014; 146: 210-217 doi:10.1016/j.anireprosci.2014.03.002
  • 122 Polisca A, Scotti L, Orlandi R. et al. Aglepristone (RU534) administration to non-pregnant bitches in the mid-luteal phase induces early luteal regression. Theriogenology 2010; 74: 672-681 doi:10.1016/j.theriogenology.2010.03.021
  • 123 Gram A, Latter S, Boos A. et al. Expression and functional implications of luteal endothelins in pregnant and non-pregnant dogs. Reproduction 2015; 150: 405-415 doi:10.1530/REP-15–0256
  • 124 Gram A, Boos A, Kowalewski MP. Uterine and placental expression of canine oxytocin receptor during pregnancy and normal and induced parturition. Reprod Domest Anim 2014; 49 (Suppl. 02) 41-49 doi:10.1111/rda.12295
  • 125 Vermeirsch H, Simoens P, Hellemans A. et al. Immunohistochemical detection of progesterone receptors in the canine uterus and their relation to sex steroid hormone levels. Theriogenology 2000; 53: 773-788 doi:10.1016/S0093–691X(99)00273–3
  • 126 Hoffmann B, Riesenbeck A, Schams D. et al. Aspects on hormonal control of normal and induced parturition in the dog. Reprod Domest Anim 1999; 34: 219-226
  • 127 Fieni F, Marnet PG, Martal J. et al. Comparison of two protocols with a progesterone antagonist aglepristone (RU534) to induce parturition in bitches. J Reprod Fertil Suppl 2001; 57: 237-242
  • 128 Baan M, Taverne MA, de Gier J. et al. Hormonal changes in spontaneous and aglepristone-induced parturition in dogs. Theriogenology 2008; 69: 399-407 doi:10.1016/j.theriogenology.2007.10.008
  • 129 Gram A, Hoffmann B, Boos A. et al. Expression and localization of vascular endothelial growth factor A (VEGFA) and its two receptors (VEGFR1/FLT1 and VEGFR2/FLK1/KDR) in the canine corpus luteum and utero-placental compartments during pregnancy and at normal and induced parturition. Gen Comp Endocrinol 2015; 223: 54-65 doi:10.1016/j.ygcen.2015.09.020
  • 130 Kowalewski MP, Michel E, Gram A. et al. Luteal and placental function in the bitch: spatio-temporal changes in prolactin receptor (PRLr) expression at dioestrus, pregnancy and normal and induced parturition. Reprod Biol Endocrinol 2011; 9: 109 doi:10.1186/1477–7827–9-109
  • 131 Goldsmith LT, Weiss G. Relaxin in human pregnancy. Ann N Y Acad Sci 2009; 1160: 130-135 doi:10.1111/j.1749–6632.2008.03800.x