Planta Med 2009; 75(15): 1549-1560
DOI: 10.1055/s-0029-1186102
Review
© Georg Thieme Verlag KG Stuttgart · New York

Pentacyclic Triterpenes of the Lupane, Oleanane and Ursane Group as Tools in Cancer Therapy

Melanie N. Laszczyk1 , 2
  • 1Betulin Institut, Darmstadt, Germany
  • 2Carl Gustav Carus-Institut, Niefern-Öschelbronn, Germany
Further Information

Publication History

received March 28, 2009 revised July 27, 2009

accepted August 5, 2009

Publication Date:
09 September 2009 (online)

Abstract

Today cancer treatment is not only a question of eliminating cancer cells by induction of cell death. New therapeutic strategies also include targeting the tumour microenvironment, avoiding angiogenesis, modulating the immune response or the chronic inflammation that is often associated with cancer. Furthermore, the induction of redifferentiation of dedifferentiated cancer cells is an interesting aspect in developing new therapy strategies. Plants provide a broad spectrum of potential drug substances for cancer therapy with multifaceted effects and targets. Pentacyclic triterpenes are one group of promising secondary plant metabolites. This review summarizes the potential of triterpenes belonging to the lupane, oleanane or ursane group, to treat cancer by different modes of action. Since Pisha et al. reported in 1995 that betulinic acid is a highly promising anticancer drug after inducing apoptosis in melanoma cell lines in vitro and in vivo, experimental work focused on the apoptosis inducing mechanisms of betulinic acid and other triterpenes. The antitumour effects were subsequently confirmed in a series of cancer cell lines from other origins, for example breast, colon, lung and neuroblastoma. In addition, in the last decade many studies have shown further effects that justify the expectation that triterpenes are useful to treat cancer by several modes of action. Thus, triterpene acids are known mainly for their antiangiogenic effects as well as their differentiation inducing effects. In particular, lupane-type triterpenes, such as betulin, betulinic acid and lupeol, display anti-inflammatory activities which often accompany immune modulation. Triterpene acids as well as triterpene monoalcohols and diols also show an antioxidative potential. The pharmacological potential of triterpenes of the lupane, oleanane or ursane type for cancer treatment seems high; although up to now no clinical trial has been published using these triterpenes in cancer therapy. They provide a multitarget potential for coping with new cancer strategies. Whether this is an effective approach for cancer treatment has to be proven. Because various triterpenes are an increasingly promising group of plant metabolites, the utilisation of different plants as their sources is of interest. Parts of plants, for example birch bark, rosemary leaves, apple peel and mistletoe shoots are rich in triterpenes and provide different triterpene compositions.

References

  • 1 Trosko J E. The role of stem cells and gap junctions as targets for cancer chemoprevention and chemotherapy.  Biomed Pharmacother. 2005;  59 (Suppl. 2) 326-331
  • 2 Brenner D E, Gescher A J. Cancer chemoprevention: lessons learned and future directions.  Br J Cancer. 2005;  93 735-739
  • 3 Xu R, Fazio G C, Matsuda S P. On the origins of triterpenoid skeletal diversity.  Phytochemistry. 2004;  65 261-291
  • 4 Ekman R. The submarin monomers and triterpenoids from the outer bark of Betula verrucosa EHRH.  Holzforschung. 1983;  37 205-211
  • 5 Laszczyk M, Jäger S, Simon-Haarhaus B, Scheffler A, Schempp C M. Physical, chemical and pharmacological characterization of a new oleogel-forming triterpene extract from the outer bark of birch (betulae cortex).  Planta Med. 2006;  72 1389-1395
  • 6 Jäger S, Trojan H, Kopp T, Laszczyk M N, Scheffler A. Pentacyclic triterpene distribution in various plants – rich sources for a new group of multi-potent plant extracts.  Molecules. 2009;  14 2016-2031
  • 7 Chaturvedi P K, Bhui K, Shukla Y. Lupeol: connotations for chemoprevention.  Cancer Lett. 2008;  263 1-13
  • 8 Ovesna Z, Vachalkova A, Horvathova K, Tothova D. Pentacyclic triterpenoic acids: new chemoprotective compounds. Minireview.  Neoplasma. 2004;  51 327-333
  • 9 Fulda S. Betulinic acid: a natural product with anticancer activity.  Mol Nutr Food Res. 2009;  53 140-146
  • 10 Fulda S, Jeremias I, Steiner H H, Pietsch T, Debatin K M. Betulinic acid: a new cytotoxic agent against malignant brain-tumor cells.  Int J Cancer. 1999;  82 435-441
  • 11 Galgon T, Wohlrab W, Dräger B. Betulinic acid induces apoptosis in skin cancer cells and differentiation in normal human keratinocytes.  Exp Dermatol. 2005;  14 736-743
  • 12 Kessler J H, Mullauer F B, de Roo G M, Medema J P. Broad in vitro efficacy of plant-derived betulinic acid against cell lines derived from the most prevalent human cancer types.  Cancer Lett. 2007;  251 132-145
  • 13 Selzer E, Pimentel E, Wacheck V, Schlegel W, Pehamberger H, Jansen B, Kodym R. Effects of betulinic acid alone and in combination with irradiation in human melanoma cells.  J Invest Dermatol. 2000;  114 935-940
  • 14 Zuco V, Supino R, Righetti S C, Cleris L, Marchesi E, Gambacorti-Passerini C, Formelli F. Selective cytotoxicity of betulinic acid on tumor cell lines, but not on normal cells.  Cancer Lett. 2002;  175 17-25
  • 15 Wachsberger P R, Burd R, Wahl M L, Leeper D B. Betulinic acid sensitization of low pH adapted human melanoma cells to hyperthermia.  Int J Hyperthermia. 2002;  18 153-164
  • 16 Noda Y, Kaiya T, Kohda K, Kawazoe Y. Enhanced cytotoxicity of some triterpenes toward leukemia L1210 cells cultured in low pH media: possibility of a new mode of cell killing.  Chem Pharm Bull (Tokyo). 1997;  45 1665-1670
  • 17 Fulda S, Scaffidi C, Susin S A, Krammer P H, Kroemer G, Peter M E, Debatin K M. Activation of mitochondria and release of mitochondrial apoptogenic factors by betulinic acid.  J Biol Chem. 1998;  273 33942-33948
  • 18 Tan Y, Yu R, Pezzuto J M. Betulinic acid-induced programmed cell death in human melanoma cells involves mitogen-activated protein kinase activation.  Clin Cancer Res. 2003;  9 2866-2875
  • 19 Liu W K, Ho J C, Cheung F W, Liu B P, Ye W C, Che C T. Apoptotic activity of betulinic acid derivatives on murine melanoma B16 cell line.  Eur J Pharmacol. 2004;  498 71-78
  • 20 Martin R, Carvalho J, Ibeas E, Hernandez M, Ruiz-Gutierrez V, Nieto M L. Acidic triterpenes compromise growth and survival of astrocytoma cell lines by regulating reactive oxygen species accumulation.  Cancer Res. 2007;  67 3741-3751
  • 21 Mullauer F B, Kessler J H, Medema J P. Betulinic acid induces cytochrome c release and apoptosis in a Bax/Bak-independent, permeability transition pore dependent fashion.  Apoptosis. 2009;  14 191-202
  • 22 Fulda S, Friesen C, Los M, Scaffidi C, Mier W, Benedict M, Nunez G, Krammer P H, Peter M E, Debatin K M. Betulinic acid triggers CD95 (APO-1/Fas)- and p 53-independent apoptosis via activation of caspases in neuroectodermal tumors.  Cancer Res. 1997;  57 4956-4964
  • 23 Selzer E, Thallinger C, Hoeller C, Oberkleiner P, Wacheck V, Pehamberger H, Jansen B. Betulinic acid-induced Mcl-1 expression in human melanoma–mode of action and functional significance.  Mol Med. 2002;  8 877-884
  • 24 Wick W, Grimmel C, Wagenknecht B, Dichgans J, Weller M. Betulinic acid-induced apoptosis in glioma cells: a sequential requirement for new protein synthesis, formation of reactive oxygen species, and caspase processing.  J Pharmacol Exp Ther. 1999;  289 1306-1312
  • 25 Rzeski W, Stepulak A, Szymanski M, Sifringer M, Kaczor J, Wejksza K, Zdzisinska B, Kandefer-Szerszen M. Betulinic acid decreases expression of bcl-2 and cyclin D1, inhibits proliferation, migration and induces apoptosis in cancer cells.  Naunyn Schmiedebergs Arch Pharmacol. 2006;  374 11-20
  • 26 Kasperczyk H, La Ferla-Bruhl K, Westhoff M A, Behrend L, Zwacka R M, Debatin K M, Fulda S. Betulinic acid as new activator of NF-kappaB: molecular mechanisms and implications for cancer therapy.  Oncogene. 2005;  24 6945-6956
  • 27 Rabi T, Shukla S, Gupta S. Betulinic acid suppresses constitutive and TNFalpha-induced NF-kappaB activation and induces apoptosis in human prostate carcinoma PC-3 cells.  Mol Carcinogen. 2008;  47 964-973
  • 28 Saleem M, Kweon M H, Yun J M, Adhami V M, Khan N, Syed D N, Mukhtar H. A novel dietary triterpene Lupeol induces fas-mediated apoptotic death of androgen-sensitive prostate cancer cells and inhibits tumor growth in a xenograft model.  Cancer Res. 2005;  65 11203-11213
  • 29 Murtaza I, Saleem M, Adhami V M, Hafeez B B, Mukhtar H. Suppression of cFLIP by lupeol, a dietary triterpene, is sufficient to overcome resistance to TRAIL-mediated apoptosis in chemoresistant human pancreatic cancer cells.  Cancer Res. 2009;  69 1156-1165
  • 30 Saleem M, Kaur S, Kweon M H, Adhami V M, Afaq F, Mukhtar H. Lupeol, a fruit and vegetable based triterpene, induces apoptotic death of human pancreatic adenocarcinoma cells via inhibition of Ras signaling pathway.  Carcinogenesis. 2005;  26 1956-1964
  • 31 Manu K A, Kuttan G. Ursolic acid induces apoptosis by activating p 53 and caspase-3 gene expressions and suppressing NF-kappaB mediated activation of bcl-2 in B16F-10 melanoma cells.  Int Immunopharmacol. 2008;  8 974-981
  • 32 Zhang P, Li H, Chen D, Ni J, Kang Y, Wang S. Oleanolic acid induces apoptosis in human leukemia cells through caspase activation and poly(ADP-ribose) polymerase cleavage.  Acta Biochim Biophys Sin (Shanghai). 2007;  39 803-809
  • 33 Kim D S, Pezzuto J M, Pisha E. Synthesis of betulinic acid derivatives with activity against human melanoma.  Bioorg Med Chem Lett. 1998;  8 1707-1712
  • 34 Hata K, Hori K, Ogasawara H, Takahashi S. Anti-leukemia activities of Lup-28-al-20(29)-en-3-one, a lupane triterpene.  Toxicol Lett. 2003;  143 1-7
  • 35 Pyo J S, Roh S H, Kim D K, Lee J G, Lee Y Y, Hong S S, Kwon S W, Park J H. Anti-cancer effect of betulin on a human lung cancer cell line: a pharmacoproteomic approach using 2D SDS PAGE coupled with nano-HPLC tandem mass spectrometry.  Planta Med. 2009;  75 127-131
  • 36 Juan M E, Wenzel U, Daniel H, Planas J M. Erythrodiol, a natural triterpenoid from olives, has antiproliferative and apoptotic activity in HT-29 human adenocarcinoma cells.  Mol Nutr Food Res. 2008;  52 595-599
  • 37 Huyke C, Reuter J, Rodig M, Kersten A, Laszczyk M, Scheffler A, Nashan D, Schempp C. Treatment of actinic keratoses with a novel betulin-based oleogel. A prospective, randomized, comparative pilot study.  J Dtsch Dermatol Ges. 2009;  7 128-133
  • 38 Sohn K H, Lee H Y, Chung H Y, Young H S, Yi S Y, Kim K W. Anti-angiogenic activity of triterpene acids.  Cancer Lett. 1995;  94 213-218
  • 39 Kiran M S, Viji R I, Sameer Kumar V B, Sudhakaran P R. Modulation of angiogenic factors by ursolic acid.  Biochem Biophys Res Commun. 2008;  371 556-560
  • 40 Cardenas C, Quesada A R, Medina M A. Effects of ursolic acid on different steps of the angiogenic process.  Biochem Biophys Res Commun. 2004;  320 402-408
  • 41 Jedinak A, Muckova M, Kost'alova D, Maliar T, Masterova I. Antiprotease and antimetastatic activity of ursolic acid isolated from Salvia officinalis.  Z Naturforsch [C]. 2006;  61 777-782
  • 42 Melzig M F, Bormann H. Betulinic acid inhibits aminopeptidase N activity.  Planta Med. 1998;  64 655-657
  • 43 Bauvois B, Dauzonne D. Aminopeptidase-N/CD13 (EC 3.4.11.2) inhibitors: chemistry, biological evaluations, and therapeutic prospects.  Med Res Rev. 2006;  26 88-130
  • 44 Bhagwat S V, Lahdenranta J, Giordano R, Arap W, Pasqualini R, Shapiro L H. CD13/APN is activated by angiogenic signals and is essential for capillary tube formation.  Blood. 2001;  97 652-659
  • 45 Kwon H J, Shim J S, Kim J H, Cho H Y, Yum Y N, Kim S H, Yu J. Betulinic acid inhibits growth factor-induced in vitro angiogenesis via the modulation of mitochondrial function in endothelial cells.  Jpn J Cancer Res. 2002;  93 417-425
  • 46 Lee M S, Moon E J, Lee S W, Kim M S, Kim K W, Kim Y J. Angiogenic activity of pyruvic acid in in vivo and in vitro angiogenesis models.  Cancer Res. 2001;  61 3290-3293
  • 47 Chintharlapalli S, Papineni S, Ramaiah S K, Safe S. Betulinic acid inhibits prostate cancer growth through inhibition of specificity protein transcription factors.  Cancer Res. 2007;  67 2816-2823
  • 48 You Y J, Nam N H, Kim Y, Bae K H, Ahn B Z. Antiangiogenic activity of lupeol from Bombax ceiba.  Phytother Res. 2003;  17 341-344
  • 49 Mantovani A, Allavena P, Sica A, Balkwill F. Cancer-related inflammation.  Nature. 2008;  454 436-444
  • 50 Ahmad S F, Khan B, Bani S, Suri K A, Satti N K, Qazi G N. Amelioration of adjuvant-induced arthritis by ursolic acid through altered Th1/Th2 cytokine production.  Pharmacol Res. 2006;  53 233-240
  • 51 Altinier G, Sosa S, Aquino R P, Mencherini T, Della Loggia R, Tubaro A. Characterization of topical antiinflammatory compounds in Rosmarinus officinalis L.  J Agric Food Chem. 2007;  55 1718-1723
  • 52 Banno N, Akihisa T, Tokuda H, Yasukawa K, Higashihara H, Ukiya M, Watanabe K, Kimura Y, Hasegawa J, Nishino H. Triterpene acids from the leaves of Perilla frutescens and their anti-inflammatory and antitumor-promoting effects.  Biosci Biotechnol Biochem. 2004;  68 85-90
  • 53 de la Puerta R, Martinez-Dominguez E, Ruiz-Gutierrez V. Effect of minor components of virgin olive oil on topical antiinflammatory assays.  Z Naturforsch [C]. 2000;  55 814-819
  • 54 Fernandez M A, de las Heras B, Garcia M D, Saenz M T, Villar A. New insights into the mechanism of action of the anti-inflammatory triterpene lupeol.  J Pharm Pharmacol. 2001;  53 1533-1539
  • 55 Miceli N, Taviano M F, Giuffrida D, Trovato A, Tzakou O, Galati E M. Anti-inflammatory activity of extract and fractions from Nepeta sibthorpii Bentham.  J Ethnopharmacol. 2005;  97 261-266
  • 56 Recio M C, Giner R M, Manez S, Gueho J, Julien H R, Hostettmann K, Rios J L. Investigations on the steroidal anti-inflammatory activity of triterpenoids from Diospyros leucomelas.  Planta Med. 1995;  61 9-12
  • 57 Alakurtti S, Makela T, Koskimies S, Yli-Kauhaluoma J. Pharmacological properties of the ubiquitous natural product betulin.  Eur J Pharm Sci. 2006;  29 1-13
  • 58 Cichewicz R H, Kouzi S A L. Chemistry, biological activity, and chemotherapeutic potential of betulinic acid for the prevention and treatment of cancer and HIV infection.  Med Res Rev. 2004;  24 90-114
  • 59 Eiznhamer D A, Xu Z Q. Betulinic acid: a promising anticancer candidate.  IDrugs. 2004;  7 359-373
  • 60 Bani S, Kaul A, Khan B, Ahmad S F, Suri K A, Gupta B D, Satti N K, Qazi G N. Suppression of T-lymphocyte activity by lupeol isolated from Crataeva religiosa.  Phytother Res. 2006;  20 279-287
  • 61 Kang S Y, Yoon S Y, Roh D H, Jeon M J, Seo H S, Uh D K, Kwon Y B, Kim H W, Han H J, Lee H J, Lee J H. The anti-arthritic effect of ursolic acid on zymosan-induced acute inflammation and adjuvant-induced chronic arthritis models.  J Pharm Pharmacol. 2008;  60 1347-1354
  • 62 Laszczyk M N. Triterpentrockenextrakt aus Birkenkork (Betula alba cortex) [dissertation]. Freiburg; Albert-Ludwigs-University 2007
  • 63 Yun Y, Han S, Park E, Yim D, Lee S, Lee C K, Cho K, Kim K. Immunomodulatory activity of betulinic acid by producing pro-inflammatory cytokines and activation of macrophages.  Arch Pharm Res. 2003;  26 1087-1095
  • 64 Ikeda Y, Murakami A, Fujimura Y, Tachibana H, Yamada K, Masuda D, Hirano K, Yamashita S, Ohigashi H. Aggregated ursolic acid, a natural triterpenoid, induces IL-1beta release from murine peritoneal macrophages: role of CD36.  J Immunol. 2007;  178 4854-4864
  • 65 Marquez-Martin A, De La Puerta R, Fernandez-Arche A, Ruiz-Gutierrez V, Yaqoob P. Modulation of cytokine secretion by pentacyclic triterpenes from olive pomace oil in human mononuclear cells.  Cytokine. 2006;  36 211-217
  • 66 Vasconcelos M A, Royo V A, Ferreira D S, Crotti A E, Andrade e Silva M L, Carvalho J C, Bastos J K, Cunha W R. In vivo analgesic and anti-inflammatory activities of ursolic acid and oleanoic acid from Miconia albicans (Melastomataceae).  Z Naturforsch [C]. 2006;  61 477-482
  • 67 Van Waes C. Nuclear factor-kappaB in development, prevention, and therapy of cancer.  Clin Cancer Res. 2007;  13 1076-1082
  • 68 Takada Y, Aggarwal B B. Betulinic acid suppresses carcinogen-induced NF-kappa B activation through inhibition of I kappa B alpha kinase and p 65 phosphorylation: abrogation of cyclooxygenase-2 and matrix metalloprotease-9.  J Immunol. 2003;  171 3278-3286
  • 69 Shishodia S, Majumdar S, Banerjee S, Aggarwal B B. Ursolic acid inhibits nuclear factor-kappaB activation induced by carcinogenic agents through suppression of IkappaBalpha kinase and p 65 phosphorylation: correlation with down-regulation of cyclooxygenase 2, matrix metalloproteinase 9, and cyclin D1.  Cancer Res. 2003;  63 4375-4383
  • 70 You H J, Choi C Y, Kim J Y, Park S J, Hahm K S, Jeong H G. Ursolic acid enhances nitric oxide and tumor necrosis factor-alpha production via nuclear factor-kappaB activation in the resting macrophages.  FEBS Lett. 2001;  509 156-160
  • 71 Choi C Y, You H J, Jeong H G L. Nitric oxide and tumor necrosis factor-alpha production by oleanolic acid via nuclear factor-kappaB activation in macrophages.  Biochem Biophys Res Commun. 2001;  288 49-55
  • 72 Suh N, Honda T, Finlay H J, Barchowsky A, Williams C, Benoit N E, Xie Q W, Nathan C, Gribble G W, Sporn M B. Novel triterpenoids suppress inducible nitric oxide synthase (iNOS) and inducible cyclooxygenase (COX-2) in mouse macrophages.  Cancer Res. 1998;  58 717-723
  • 73 Bernard P, Scior T, Didier B, Hibert M, Berthon J Y L. Ethnopharmacology and bioinformatic combination for leads discovery: application to phospholipase A(2) inhibitors.  Phytochemistry. 2001;  58 865-874
  • 74 Dharmappa K K, Kumar R V, Nataraju A, Mohamed R, Shivaprasad H V, Vishwanath B S. Anti-inflammatory activity of oleanolic acid by inhibition of secretory phospholipase A2.  Planta Med. 2009;  75 211-215
  • 75 Reyes C P, Nunez M J, Jimenez I A, Busserolles J, Alcaraz M J, Bazzocchi I L. Activity of lupane triterpenoids from Maytenus species as inhibitors of nitric oxide and prostaglandin E2.  Bioorg Med Chem. 2006;  14 1573-1579
  • 76 Saleem M, Afaq F, Adhami V M, Mukhtar H. Lupeol modulates NF-kappaB and PI3K/Akt pathways and inhibits skin cancer in CD-1 mice.  Oncogene. 2004;  23 5203-5214
  • 77 Telliez A, Furman C, Pommery N, Henichart J P. Mechanisms leading to COX-2 expression and COX-2 induced tumorigenesis: topical therapeutic strategies targeting COX-2 expression and activity.  Anticancer Agents Med Chem. 2006;  6 187-208
  • 78 Valko M, Leibfritz D, Moncol J, Cronin M T, Mazur M, Telser J. Free radicals and antioxidants in normal physiological functions and human disease.  Int J Biochem Cell Biol. 2007;  39 44-84
  • 79 Castelao J E, Gago-Dominguez M. Risk factors for cardiovascular disease in women: relationship to lipid peroxidation and oxidative stress.  Med Hypotheses. 2008;  71 39-44
  • 80 Leitinger N. The role of phospholipid oxidation products in inflammatory and autoimmune diseases: evidence from animal models and in humans.  Subcell Biochem. 2008;  49 325-350
  • 81 Valko M, Rhodes C J, Moncol J, Izakovic M, Mazur M. Free radicals, metals and antioxidants in oxidative stress-induced cancer.  Chem Biol Interact. 2006;  160 1-40
  • 82 Kalpakcioglu B, Senel K. The interrelation of glutathione reductase, catalase, glutathione peroxidase, superoxide dismutase, and glucose-6-phosphate in the pathogenesis of rheumatoid arthritis.  Clin Rheumatol. 2008;  27 141-145
  • 83 Afonso V, Champy R, Mitrovic D, Collin P, Lomri A. Reactive oxygen species and superoxide dismutases: role in joint diseases.  Joint Bone Spine. 2007;  74 324-329
  • 84 Fernandes A P, Holmgren A. Glutaredoxins: glutathione-dependent redox enzymes with functions far beyond a simple thioredoxin backup system.  Antioxid Redox Signal. 2004;  6 63-74
  • 85 Prasad S, Kalra N, Singh M, Shukla Y. Protective effects of lupeol and mango extract against androgen induced oxidative stress in Swiss albino mice.  Asian J Androl. 2008;  10 313-318
  • 86 Ramachandran S, Prasad N R. Effect of ursolic acid, a triterpenoid antioxidant, on ultraviolet-B radiation-induced cytotoxicity, lipid peroxidation and DNA damage in human lymphocytes.  Chem Biol Interact. 2008;  176 99-107
  • 87 Sudhahar V, Ashok Kumar S, Varalakshmi P, Sujatha V. Protective effect of lupeol and lupeol linoleate in hypercholesterolemia associated renal damage.  Mol Cell Biochem. 2008;  317 11-20
  • 88 Sudharsan P T, Mythili Y, Selvakumar E, Varalakshmi P. Cardioprotective effect of pentacyclic triterpene, lupeol and its ester on cyclophosphamide-induced oxidative stress.  Hum Exp Toxicol. 2005;  24 313-318
  • 89 Sultana S, Saleem M, Sharma S, Khan N. Lupeol, a triterpene, prevents free radical mediated macromolecular damage and alleviates benzoyl peroxide induced biochemical alterations in murine skin.  Indian J Exp Biol. 2003;  41 827-831
  • 90 Malini M M, Lenin M, Varalakshmi P. Protective effect of triterpenes on calcium oxalate crystal-induced peroxidative changes in experimental urolithiasis.  Pharmacol Res. 2000;  41 413-418
  • 91 Geetha T, Varalakshmi P. Anticomplement activity of triterpenes from Crataeva nurvala stem bark in adjuvant arthritis in rats.  Gen Pharmacol. 1999;  32 495-497
  • 92 Vidya L, Malini M M, Varalakshmi P. Effect of pentacyclic triterpenes on oxalate-induced changes in rat erythrocytes.  Pharmacol Res. 2000;  42 313-316
  • 93 Geetha T, Varalakshmi P, Latha R M. Effect of triterpenes from Crataeva nurvala stem bark on lipid peroxidation in adjuvant induced arthritis in rats.  Pharmacol Res. 1998;  37 191-195
  • 94 Vidya L, Varalakshmi P. Control of urinary risk factors of stones by betulin and lupeol in experimental hyperoxaluria.  Fitoterapia. 2000;  71 535-543
  • 95 Sudhahar V, Ashokkumar S, Varalakshmi P. Effect of lupeol and lupeol linoleate on lipemic – hepatocellular aberrations in rats fed a high cholesterol diet.  Mol Nutr Food Res. 2006;  50 1212-1219
  • 96 Sudhahar V, Kumar S A, Sudharsan P T, Varalakshmi P. Protective effect of lupeol and its ester on cardiac abnormalities in experimental hypercholesterolemia.  Vasc Pharmacol. 2007;  46 412-418
  • 97 Prasad S, Kalra N, Shukla Y. Hepatoprotective effects of lupeol and mango pulp extract of carcinogen induced alteration in Swiss albino mice.  Mol Nutr Food Res. 2007;  51 352-359
  • 98 Preetha S P, Kanniappan M, Selvakumar E, Nagaraj M, Varalakshmi P. Lupeol ameliorates aflatoxin B1-induced peroxidative hepatic damage in rats.  Comp Biochem Physiol C Toxicol Pharmacol. 2006;  143 333-339
  • 99 Nagaraj M, Sunitha S, Varalakshmi P. Effect of lupeol, a pentacyclic triterpene, on the lipid peroxidation and antioxidant status in rat kidney after chronic cadmium exposure.  J Appl Toxicol. 2000;  20 413-417
  • 100 Sunitha S, Nagaraj M, Varalakshmi P. Hepatoprotective effect of lupeol and lupeol linoleate on tissue antioxidant defence system in cadmium-induced hepatotoxicity in rats.  Fitoterapia. 2001;  72 516-523
  • 101 Saleem M, Alam A, Arifin S, Shah M S, Ahmed B, Sultana S. Lupeol, a triterpene, inhibits early responses of tumor promotion induced by benzoyl peroxide in murine skin.  Pharmacol Res. 2001;  43 127-134
  • 102 Nigam N, Prasad S, Shukla Y. Preventive effects of lupeol on DMBA induced DNA alkylation damage in mouse skin.  Food Chem Toxicol. 2007;  45 2331-2335
  • 103 Miura N, Matsumoto Y, Miyairi S, Nishiyama S, Naganuma A. Protective effects of triterpene compounds against the cytotoxicity of cadmium in HepG2 cells.  Mol Pharmacol. 1999;  56 1324-1328
  • 104 Szuster-Ciesielska A, Kandefer-Szerszen M. Protective effects of betulin and betulinic acid against ethanol-induced cytotoxicity in HepG2 cells.  Pharmacol Rep. 2005;  57 588-595
  • 105 Furtado R A, Rodrigues E P, Araujo F R, Oliveira W L, Furtado M A, Castro M B, Cunha W R, Tavares D C. Ursolic acid and oleanolic acid suppress preneoplastic lesions induced by 1, 2-dimethylhydrazine in rat colon.  Toxicol Pathol. 2008;  36 576-580
  • 106 Liu J, Wu Q, Lu Y F, Pi J. New insights into generalized hepatoprotective effects of oleanolic acid: key roles of metallothionein and Nrf2 induction.  Biochem Pharmacol. 2008;  76 922-928
  • 107 Eggler A L, Gay K A, Mesecar A D. Molecular mechanisms of natural products in chemoprevention: induction of cytoprotective enzymes by Nrf2.  Mol Nutr Food Res. 2008;  52 (Suppl. 1) S84-S94
  • 108 Lee K H, Nam G W, Kim S H, Lee S H. Phytocomponents of triterpenoids, oleanolic acid and ursolic acid, regulated differently the progressing of epidermal keratinocytes via PPAR-a pathway.  Exp Dermatol. 2006;  15 66-73
  • 109 Woelfle U L M, Kraus M, Leuner K, Kersten A, Simon-Haarhaus B, Scheffler A, Martin S F, Müller W E, Nashan D, Schempp C M. Triterpenes promote keratinocyte differentiation in vitro, ex vivo and in vivo. A role for the transient receptor potential canonical (subtype) 6.  JID. 2009;  DOI: 10.1038/jid.2009.248
  • 110 Schmuth M, Jiang Y J, Dubrac S, Elias P M, Feingold K R. Thematic review series: skin lipids. Peroxisome proliferator-activated receptors and liver X receptors in epidermal biology.  J Lipid Res. 2008;  49 499-509
  • 111 Lim S W, Hong S P, Jeong S W, Kim B, Bak H, Ryoo H C, Lee S H, Ahn S K. Simultaneous effect of ursolic acid and oleanolic acid on epidermal permeability barrier function and epidermal keratinocyte differentiation via peroxisome proliferator-activated receptor-alpha.  J Dermatol. 2007;  34 625-634
  • 112 Muller M, Essin K, Hill K, Beschmann H, Rubant S, Schempp C M, Gollasch M, Boehncke W H, Harteneck C, Muller W E, Leuner K. Specific TRPC6 channel activation, a novel approach to stimulate keratinocyte differentiation.  J Biol Chem. 2008;  283 33942-33954
  • 113 Lee H Y, Chung H Y, Kim K H, Lee J J, Kim K W. Induction of differentiation in the cultured F9 teratocarcinoma stem cells by triterpene acids.  J Cancer Res Clin Oncol. 1994;  120 513-518
  • 114 Paik K J, Jeon S S, Chung H Y, Lee K H, Kim K W, Chung J K, Kim N D. Induction of differentiation of the cultured rat mammary epithelial cells by triterpene acids.  Arch Pharm Res. 1998;  21 398-405
  • 115 Hata K, Hori K, Murata J, Takahashi S. Remodeling of actin cytoskeleton in lupeol-induced B16 2F2 cell differentiation.  J Biochem. 2005;  138 467-472
  • 116 Ogiwara K, Hata K. Melanoma cell differentiation induced by lupeol separates into two stages: morphological and functional changes.  Nat Med (Tokyo). 2009;  63 323-326
  • 117 Poon K H, Zhang J, Wang C, Tse A K, Wan C K, Fong W F. Betulinic acid enhances 1alpha,25-dihydroxyvitamin D3-induced differentiation in human HL-60 promyelocytic leukemia cells.  Anticancer Drugs. 2004;  15 619-624
  • 118 Hata K, Hori K, Takahashi S. Differentiation- and apoptosis-inducing activities by pentacyclic triterpenes on a mouse melanoma cell line.  J Nat Prod. 2002;  65 645-648
  • 119 Pisha E, Chai H, Lee I S, Chagwedera T E, Farnsworth N R, Cordell G A, Beecher C W, Fong H H, Kinghorn A D, Brown D M, Wani M C, Wall M E, Hieken T J, Das Gupta T K, Pezzuto J M. Discovery of betulinic acid as a selective inhibitor of human melanoma that functions by induction of apoptosis.  Nat Med. 1995;  1 1046-1051
  • 120 Udeani G O, Zhao G M, Geun Shin Y, Cooke B P, Graham J, Beecher C W, Kinghorn A D, Pezzuto J M. Pharmacokinetics and tissue distribution of betulinic acid in CD-1 mice.  Biopharm Drug Dispos. 1999;  20 379-383
  • 121 Jäger S, Laszczyk M N, Scheffler A. A preliminary pharmacokinetic study of betulin, the main pentacyclic triterpene from extract of outer bark of birch (Betulae alba cortex).  Molecules. 2008;  13 3224-3235
  • 122 Jäger S, Winkler K, Pfüller U, Scheffler A. Solubility studies of oleanolic acid and betulinic acid in aqueous solutions and plant extracts of Viscum album L.  Planta Med. 2007;  73 157-162
  • 123 Prasad S, Kalra N, Shukla Y. Induction of apoptosis by lupeol and mango extract in mouse prostate and LNCaP cells.  Nutr Cancer. 2008;  60 120-130
  • 124 Saleem M, Maddodi N, Abu Zaid M, Khan N, bin Hafeez B, Asim M, Suh Y, Yun J M, Setaluri V, Mukhtar H. Lupeol inhibits growth of highly aggressive human metastatic melanoma cells in vitro and in vivo by inducing apoptosis.  Clin Cancer Res. 2008;  14 2119-2127
  • 125 Raphael T J, Kuttan G. Effect of naturally occurring triterpenoids ursolic acid and glycyrrhizic acid on the cell-mediated immune responses of metastatic tumor-bearing animals.  Immunopharmacol Immunotoxicol. 2008;  30 243-255
  • 126 Lee I, Lee J, Lee Y H, Leonard J. Ursolic acid-induced changes in tumor growth, O2 consumption, and tumor interstitial fluid pressure.  Anticancer Res. 2001;  21 2827-2833
  • 127 Sawada N, Kataoka K, Kondo K, Arimochi H, Fujino H, Takahashi Y, Miyoshi T, Kuwahara T, Monden Y, Ohnishi Y. Betulinic acid augments the inhibitory effects of vincristine on growth and lung metastasis of B16F10 melanoma cells in mice.  Br J Cancer. 2004;  90 1672-1678
  • 128 Lee T K, Poon R T, Wo J Y, Ma S, Guan X Y, Myers J N, Altevogt P, Yuen A P. Lupeol suppresses cisplatin-induced nuclear factor-kappaB activation in head and neck squamous cell carcinoma and inhibits local invasion and nodal metastasis in an orthotopic nude mouse model.  Cancer Res. 2007;  67 8800-8809
  • 129 Liu J. Pharmacology of oleanolic acid and ursolic acid.  J Ethnopharmacol. 1995;  49 57-68
  • 130 Singh G B, Singh S, Bani S, Gupta B D, Banerjee S K. Anti-inflammatory activity of oleanolic acid in rats and mice.  J Pharm Pharmacol. 1992;  44 456-458
  • 131 Shin Y G, Cho K H, Chung S M, Graham J, Das Gupta T K, Pezzuto J M. Determination of betulinic acid in mouse blood, tumor and tissue homogenates by liquid chromatography-electrospray mass spectrometry.  J Chromatogr B Biomed Sci Appl. 1999;  732 331-336
  • 132 Guo M, Zhang S, Song F, Wang D, Liu Z, Liu S. Studies on the non-covalent complexes between oleanolic acid and cyclodextrins using electrospray ionization tandem mass spectrometry.  J Mass Spectrom. 2003;  38 723-731
  • 133 Strüh C, Jäger S, Schempp C M, Scheffler A, Martin S F. Solubilized triterpenes from mistletoe show anti-tumor effects on skin-derived cell lines.  Planta Med. 2008;  74 1130
  • 134 Kang H S, Park J E, Lee Y J, Chang I S, Chung Y I, Tae G. Preparation of liposomes containing oleanolic acid via micelle-to-vesicle transition.  J Nanosci Nanotechnol. 2007;  7 3944-3948

Dr. Melanie N. Laszczyk

Betulin-Institut

Blumenstr. 25

64297 Darmstadt

Germany

Phone: + 49 72 33 82 93 71

Email: m.laszczyk@betulin-institut.de

    >