Synthesis 2010(9): 1441-1448  
DOI: 10.1055/s-0029-1218683
PAPER
© Georg Thieme Verlag Stuttgart ˙ New York

Copper(II)-Catalyzed Conversion of Aryl/Heteroaryl Boronic Acids, Boronates, and Trifluoroborates into the Corresponding Azides: Substrate Scope and Limitations

Kimberly D. Grimes, Amol Gupte, Courtney C. Aldrich*
Center for Drug Design, Academic Health Center, University of Minnesota, Minneapolis, MN 55455, USA
Fax: +1(612)6265173; e-Mail: aldri015@umn.edu;
Further Information

Publication History

Received 2 November 2009
Publication Date:
24 February 2010 (online)

Abstract

We report the copper(II)-catalyzed conversion of organoboron compounds into the corresponding azide derivatives. A systematic series of phenylboronic acid derivatives is evaluated to examine the importance of steric and electronic effects of the substituents on reaction yield as well as functional group compatibility. Heterocyclic substrates are also shown to participate in this mild reaction while compounds incorporating B-C(sp³) bonds are unreactive under the reaction conditions. The copper(II)-catalyzed boronic acid-azide coupling reaction is further extended to both boronate esters and potassium organotrifluoroborate salts. The method described herein complements existing procedures for the preparation of aryl azides from the respective amino, triazene, and halide derivatives and we expect that it will greatly facilitate copper- and ruthenium-catalyzed azide-alkyne cycloaddition reactions for the preparation of diversely functionalized 1-aryl- or 1-heteroaryl-1,2,3-triazoles derivatives.

    References

  • 1 Tron GC. Pirali T. Billington RA. Canonico PL. Sorba G. Genazzani AA. Med. Res. Rev.  2008,  28:  278 
  • For some representative recent examples, see:
  • 2a Gupte A. Boshoff HI. Wilson DJ. Neres J. Labello NP. Somu RV. Xing C. Barry CE. Aldrich CC. J. Med. Chem.  2008,  51:  7495 
  • 2b Giffin MJ. Heaslet H. Brik A. Lin Y.-C. Cauvi G. Wong C.-H. McRee DE. Elder JH. Stout CD. Torbett BE. J. Med. Chem.  2008,  51:  6263 
  • 2c Gill C. Jadhav G. Shaikh M. Kale R. Ghawalkar A. Nagargoje D. Shiradkar M. Bioorg. Med. Chem. Lett.  2008,  18:  6244 
  • 2d Klein M. Dinér P. Dorin-Semblat D. Doering C. Grotli M. Org. Biomol. Chem.  2009,  7:  3421 
  • 2e Maurya SK. Gollapalli DR. Kirubakaran S. Zhang M. Johnson CR. Benjamin NN. Hedstrom L. Cuny GD. J. Med. Chem.  2009,  52:  4623 
  • 2f Upadhayaya RS. Kulkarni GM. Vasireddy NR. Vandavasi JK. Dixit SS. Sharma V. Chattopadhyaya J. Bioorg. Med. Chem.  2009,  17:  4681 
  • 3 Avermaria F. Zimmermann V. Bräse S. Synlett  2004,  1163 
  • 4 Barral K. Moorhouse AD. Moses JE. Org. Lett.  2007,  9:  1809 
  • 5 Zhu W. Ma D. Chem. Commun.  2004,  888 
  • 6 Morgan J. Pinhey JT. J. Chem. Soc., Perkin Trans. 1  1990,  715 
  • 7 Huber M.-L. Pinhey JT. J. Chem. Soc., Perkin Trans. 1  1990,  721 
  • 8 Tao C.-Z. Cui X. Li J. Liu A.-X. Liu L. Guo Q.-X. Tetrahedron Lett.  2007,  48:  3525 
  • 9 Chan DMT. Monaco KL. Wang R.-P. Winters MP. Tetrahedron Lett.  1998,  39:  2933 
  • 10 Lam PYS. Clark CG. Saubern S. Adams J. Winters MP. Chan DMT. Combs A. Tetrahedron Lett.  1998,  39:  2941 
  • 11 Hansch C. Leo A. Taft RW. Chem. Rev.  1991,  91:  165 
  • 12 Molander GA. Ellis N. Acc. Chem. Res.  2007,  40:  275 
  • 13 Tornøe CW. Christensen C. Meldal M. J. Org. Chem.  2002,  67:  3057 
  • 14 Rostovtsev VV. Green LG. Fokin VV. Sharpless KB. Angew. Chem. Int. Ed.  2002,  41:  2596 
  • 15 Chan DMT. Lam PYS. Recent Advances in Copper-Promoted C-Heteroatom Bond Cross-Coupling Reactions with Boronic Acids and Derivatives, In Boronic Acids   Hall DG. Wiley-VCH; Weinheim: 2005. 
  • 16 Bertz SH. Cope S. Murphy M. Ogle CA. Taylor BJ. J. Am. Chem. Soc.  2007,  129:  7208 
  • 17 Pudlo M. Csányi D. Moreau F. Hajós G. Riedl Z. Sapi J. Tetrahedron  2007,  63:  10320 
  • 18 Cho YA. Kim DS. Ahn HR. Canturk B. Molander GA. Ham J. Org. Lett.  2009,  11:  4330