Planta Med 2011; 77(8): 773-785
DOI: 10.1055/s-0030-1270924
Reviews
© Georg Thieme Verlag KG Stuttgart · New York

Natural Inhibitors of Pancreatic Lipase as New Players in Obesity Treatment

Ana Laura de la Garza1 , Fermín I. Milagro1 , Noemí Boque1 , Javier Campión1 , J. Alfredo Martínez1
  • 1Department of Nutrition and Food Sciences, Physiology and Toxicology, University of Navarra, Pamplona, Spain
Further Information

Publication History

received Dec. 7, 2010 revised February 11, 2011

accepted February 21, 2011

Publication Date:
16 March 2011 (online)

Abstract

Obesity is a multifactorial disease characterized by an excessive weight for height due to an enlarged fat deposition such as adipose tissue, which is attributed to a higher calorie intake than the energy expenditure. The key strategy to combat obesity is to prevent chronic positive impairments in the energy equation. However, it is often difficult to maintain energy balance, because many available foods are high-energy yielding, which is usually accompanied by low levels of physical activity.

The pharmaceutical industry has invested many efforts in producing antiobesity drugs; but only a lipid digestion inhibitor obtained from an actinobacterium is currently approved and authorized in Europe for obesity treatment. This compound inhibits the activity of pancreatic lipase, which is one of the enzymes involved in fat digestion.

In a similar way, hundreds of extracts are currently being isolated from plants, fungi, algae, or bacteria and screened for their potential inhibition of pancreatic lipase activity. Among them, extracts isolated from common foodstuffs such as tea, soybean, ginseng, yerba mate, peanut, apple, or grapevine have been reported. Some of them are polyphenols and saponins with an inhibitory effect on pancreatic lipase activity, which could be applied in the management of the obesity epidemic.

References

  • 1 Drew B, Dixon A, Dixon J. Obesity management: update on orlistat.  Vasc Health Risk Manag. 2007;  3 817-821
  • 2 Brug J, Crawford D. The obesity pandemic. Is it bad or worse?.  Eur J Public Health. 2009;  19 570-571
  • 3 Schrauwen P, Westerterp K R. The role of high-fat diets and physical activity in the regulation of body weight.  Br J Nutr. 2000;  84 417-427
  • 4 Voshol P, Rensen P C N, van Dijk K, Romijn J, Havekes L. Effect of plasma triglyceride metabolism on lipid storage in adipose tissue: studies using genetically engineered mouse models.  Biochim Biophys Acta. 2009;  1791 479-485
  • 5 Abete I, Astrup A, Martnez J A, Thorsdottir I, Zulet M. Obesity and the metabolic syndrome: role of different dietary macronutrient distribution patterns and specific nutritional components on weight loss and maintenance.  Nutr Rev. 2010;  68 214-231
  • 6 Little T, Horowitz M, Feinle-Bisset C. Modulation by high-fat diets of gastrointestinal function and hormones associated with the regulation of energy intake: implications for the pathophysiology of obesity.  Am J Clin Nutr. 2007;  86 531-541
  • 7 Rubio M, Gargallo M, Millán A, Moreno B. Drugs in the treatment of obesity: sibutramine, orlistat and rimonabant.  Public Health Nutr. 2007;  10 1200-1205
  • 8 Moreno D, Ilic N, Poulev A, Brasaemle D, Fried S, Raskin I. Inhibitory effects of grape seed extract on lipases.  Nutrition. 2003;  19 876-879
  • 9 Birari R, Bhutani K. Pancreatic lipase inhibitors from natural sources: unexplored potential.  Drug Discov Today. 2007;  12 879-889
  • 10 Sumantran V. Experimental approaches for studying uptake and action of herbal medicines.  Phytother Res. 2007;  21 210-214
  • 11 Yamagishi S, Matsui T, Ueda S, Fukami K, Okuda S. Clinical utility of acarbose, an alpha-glucosidase inhibitor in cardiometabolic disorders.  Curr Drug Metab. 2009;  10 159-163
  • 12 Raz I, Eldor R, Cernea S, Shafrir E. Diabetes: insulin resistance and derangements in lipid metabolism. Cure through intervention in fat transport and storage.  Diabetes Metab Res. 2005;  21 3-14
  • 13 Hosoyama H, Sugimoto A, Suzuki Y, Sakane I, Kakuda T. [Isolation and quantitative analysis of the alpha-amylase inhibitor in Lagerstroemia speciosa (L.) Pers. (Banaba)].  Yakugaku Zasshi. 2003;  123 599-605
  • 14 Tsujita T, Takaku T, Suzuki T. Chestnut astringent skin extract, an alpha-amylase inhibitor, retards carbohydrate absorption in rats and humans.  J Nutr Sci Vitaminol. 2008;  54 82-88
  • 15 Tormo M A, Gil-Exojo I, de Tejada A R, Campillo J E. White bean amylase inhibitor administered orally reduces glycaemia in type 2 diabetic rats.  Br J Nutr. 2006;  96 539-544
  • 16 Bray G, Ryan D. Drug treatment of the overweight patient.  Gastroenterology. 2007;  132 2239-2252
  • 17 McClendon K, Riche D, Uwaifo G. Orlistat: current status in clinical therapeutics.  Expert Opin Drug Saf. 2009;  8 727-744
  • 18 Weibel E K, Hadvary P, Hochuli E, Kupfer E, Lengsfeld H. Lipstatin, an inhibitor of pancreatic lipase, produced by Streptomyces toxytricini. I. Producing organism, fermentation, isolation and biological activity.  J Antibiot. 1987;  40 1081-1085
  • 19 Viner R M, Hsia Y, Tomsic T, Wong I C K. Efficacy and safety of anti-obesity drugs in children and adolescents: systematic review and meta-analysis.  Obes Rev. 2010;  11 593-602
  • 20 Heymsfield S B, Segal K R, Hauptman J, Lucas C P, Boldrin M N, Rissanen A. Effects of weight loss with orlistat on glucose tolerance and progression to type 2 diabetes in obese adults.  Arch Intern Med. 2000;  160 1321-1326
  • 21 Torgerson J, Hauptman J, Boldrin M, Sjstrm L. Xenical in the prevention of diabetes in obese subjects (XENDOS) study: a randomized study of orlistat as an adjunct to lifestyle changes for the prevention of type 2 diabetes in obese patients.  Diabetes Care. 2004;  27 155-161
  • 22 Slanc P, Doljak B, Kreft S, Lunder M, Janes D, Strukelj B. Screening of selected food and medicinal plant extracts for pancreatic lipase inhibition.  Phytother Res. 2009;  23 874-877
  • 23 Slanc P, Doljak B, Mlinaric A, Strukelj B. Screening of wood damaging fungi and macrofungi for inhibitors of pancreatic lipase.  Phytother Res. 2004;  18 758-762
  • 24 Bitou N, Ninomiya M, Tsujita T, Okuda H. Screening of lipase inhibitors from marine algae.  Lipids. 1999;  34 441-445
  • 25 Abete I, Parra M D, Zulet M A, Martinez J A. Different dietary strategies for weight loss in obesity: role of energy and macronutrient content.  Nutr Rev. 2006;  19 5-17
  • 26 Astrup A. The role of dietary fat in the prevention and treatment of obesity. Efficacy and safety of low-fat diets.  Int J Obes. 2001;  25 46-50
  • 27 Lomba A, Martinez J A, Garcia-Daz D, Paternain L, Marti A, Campion J, Milagro F I. Weight gain induced by an isocaloric pair-fed high fat diet: a nutriepigenetic study on FASN and NDUFB6 gene promoters.  Mol Genet Metab. 2010;  101 273-278
  • 28 Lomba A, Milagro F I, Garcia-Daz D F, Campion J, Marzo F, Martinez J A. A high-sucrose isocaloric pair-fed model induces obesity and impairs NDUFB6 gene function in rat adipose tissue.  J Nutrigenet Nutrigenomics. 2009;  2 267-272
  • 29 Hermsdorff H H M, Volp A C P, Bressan J. [Macronutrient profile affects diet-induced thermogenesis and energy intake].  Arch Latinoam Nutr. 2007;  57 33-42
  • 30 Mobbs C, Mastaitis J, Yen K, Schwartz J, Mohan V, Poplawski M. Low-carbohydrate diets cause obesity, low-carbohydrate diets reverse obesity: a metabolic mechanism resolving the paradox.  Appetite. 2007;  48 135-138
  • 31 Rolls B J. The role of energy density in the overconsumption of fat.  J Nutr. 2000;  130 268-271
  • 32 Jäger S, Trojan H, Kopp T, Laszczyk M, Scheffler A. Pentacyclic triterpene distribution in various plants – rich sources for a new group of multi-potent plant extracts.  Molecules. 2009;  14 2016-2031
  • 33 Stevenson E, Astbury N, Simpson E, Taylor M, Macdonald I. Fat oxidation during exercise and satiety during recovery are increased following a low-glycemic index breakfast in sedentary women.  J Nutr. 2009;  139 890-897
  • 34 Armand M. Lipases and lipolysis in the human digestive tract: where do we stand?.  Curr Opin Clin Nutr Metab Care. 2007;  10 156-164
  • 35 Lowe M. The triglyceride lipases of the pancreas.  J Lipid Res. 2002;  43 2007-2016
  • 36 Sugiyama H, Akazome Y, Shoji T, Yamaguchi A, Yasue M, Kanda T. Oligomeric procyanidins in apple polyphenol are main active components for inhibition of pancreatic lipase and triglyceride absorption.  J Agric Food Chem. 2007;  55 4604-4609
  • 37 Neovius M, Johansson K, Rssner S. Head-to-head studies evaluating efficacy of pharmaco-therapy for obesity: a systematic review and meta-analysis.  Obes Rev. 2008;  9 420-427
  • 38 Filippatos T, Derdemezis C, Gazi I, Nakou E, Mikhailidis D, Elisaf M. Orlistat-associated adverse effects and drug interactions: a critical review.  Drug Saf. 2008;  31 53-65
  • 39 Kopelman P, Bryson A, Hickling R, Rissanen A, Rossner S, Toubro S. Cetilistat (ATL-962), a novel lipase inhibitor: a 12-week randomized, placebo-controlled study of weight reduction in obese patients.  Int J Obes. 2007;  31 494-499
  • 40 Melia A T, Koss-Twardy S G, Zhi J. The effect of orlistat, an inhibitor of dietary fat absorption, on the absorption of vitamins A and E in healthy volunteers.  J Clin Pharmacol. 1996;  36 647-653
  • 41 Mutoh M, Nakada N, Matsukuma S, Ohshima S, Yoshinari K, Watanabe J. Panclicins, novel pancreatic lipase inhibitors. I. Taxonomy, fermentation, isolation and biological activity.  J Antibiot. 1994;  47 1369-1375
  • 42 Nonaka Y, Ohtaki H, Ohtsuka E, Kocha T, Fukuda T, Takeuchi T. Effects of ebelactone B, a lipase inhibitor, on intestinal fat absorption in the rat.  J Enzym Inhib. 1996;  10 57-63
  • 43 Liu D, Wang F, Liao T, Tang J, Steglich W, Zhu H. Vibralactone: a lipase inhibitor with an unusual fused beta-lactone produced by cultures of the basidiomycete Boreostereum vibrans.  Org Lett. 2006;  8 5749-5752
  • 44 Weber H K, Zuegg J, Faber K, Pleiss J. Molecular reasons for lipase-sensitivity against acetaldehyde.  J Mol Catal B. 1997;  131-138
  • 45 Mizutani T, Inatomi S, Inazu A, Kawahara E. Hypolipidemic effect of Pleurotus eryngii extract in fat-loaded mice.  J Nutr Sci Vitaminol. 2010;  56 48-53
  • 46 Lee J, Song J, Lee J. Optimal extraction conditions of anti-obesity lipase inhibitor from Phellinus linteus and nutritional characteristics of the extracts.  Mycobiology. 2010;  38 58-61
  • 47 Kim J, Kim H, Park H, Youn S, Choi D, Shin C. Development of inhibitors against lipase and alpha-glucosidase from derivatives of monascus pigment.  FEMS Microbiol Lett. 2007;  276 93-98
  • 48 Jones A, Gu L, Sorrels C, Sherman D, Gerwick W. New tricks from ancient algae: natural products biosynthesis in marine cyanobacteria.  Curr Opin Chem Biol. 2009;  13 216-223
  • 49 Bitou N, Ninomiya M, Tsujita T, Okuda H. Screening of lipase inhibitors from marine algae.  Lipids. 1999;  34 441-445
  • 50 Ben Rebah F, Smaoui S, Frikha F, Gargouri Y, Miled N. Inhibitory effects of tunisian marine algal extracts on digestive lipases.  Appl Biochem Biotechnol. 2008;  151 71-79
  • 51 Matsumoto M, Hosokawa M, Matsukawa N, Hagio M, Shinoki A, Nishimukai M. Suppressive effects of the marine carotenoids, fucoxanthin and fucoxanthinol on triglyceride absorption in lymph duct-cannulated rats.  Eur J Nutr. 2010;  49 243-249
  • 52 Gholamhoseinian A, Shahouzehi B, Sharifi-far F. Inhibitory effect of some plant extracts on pancreatic lipase.  Int J Pharmacol. 2010;  6 18-24
  • 53 Gargouri Y, Julien R, Pieroni G, Verger R, Sarda L. Studies on the inhibition of pancreatic and microbial lipases by soybean proteins.  J Lipid Res. 1984;  25 1214-1221
  • 54 Lairon D, Lafont H, Vigne J L, Nalbone G, Lonardi J, Hauton J C. Effects of dietary fibers and cholestyramine on the activity of pancreatic lipase in vitro.  Am J Clin Nutr. 1985;  42 629-638
  • 55 Tsujita T, Matsuura Y, Okuda H. Studies on the inhibition of pancreatic and carboxylester lipases by protamine.  J Lipid Res. 1996;  37 1481-1487
  • 56 Tsujita T, Sumiyoshi M, Takaku T, Momsen W, Lowe M, Brockman H. Inhibition of lipases by epsilon-polylysine.  J Lipid Res. 2003;  44 2278-2286
  • 57 Ivanova M, Panaiotov I, Bois A, GArgouri Y, Verger R. Inhibitiion of pancreatic lipase by ovalbumin and -lactoglobulin A at the air-water interface.  J Colloid Interface Sci. 1990;  136 363-374
  • 58 Gargouri Y, Julien R, Sugihara A, Verger R, Sarda L. Inhibition of pancreatic and microbial lipases by proteins.  Biochim Biophys Acta. 1984;  795 326-331
  • 59 Han L K, Kimura Y, Okuda H. Reduction in fat storage during chitin-chitosan treatment in mice fed a high-fat diet.  Int J Obes. 1999;  23 174-179
  • 60 Tsujita T, Takaichi H, Takaku T, Sawai T, Yoshida N, Hiraki J. Inhibition of lipase activities by basic polysaccharide.  J Lipid Res. 2007;  48 358-365
  • 61 Knuckles B. Effect of phytate and other myo-inositol phosphate esters on lipase activity.  J Food Sci. 1988;  53 250-252
  • 62 Raghavendra M P, Prakash V. Phenylboronic acid–a potent inhibitor of lipase from Oryza sativa.  J Agric Food Chem. 2002;  50 6037-6041
  • 63 Ninomiya K, Matsuda H, Shimoda H, Nishida N, Kasajima N, Yoshino T. Carnosic acid, a new class of lipid absorption inhibitor from sage.  Bioorg Med Chem Lett. 2004;  14 1943-1946
  • 64 Zhao H L, Sim J, Shim S H, Ha Y W, Kang S S, Kim Y S. Antiobese and hypolipidemic effects of platycodin saponins in diet-induced obese rats: evidences for lipase inhibition and calorie intake restriction.  Int J Obes. 2005;  29 983-990
  • 65 Zhao H, Kim Y. Determination of the kinetic properties of platycodin D for the inhibition of pancreatic lipase using a 1,2-diglyceride-based colorimetric assay.  Arch Pharm Res. 2004;  27 1048-1052
  • 66 Kwon C, Sohn H, Kim S, Kim J, Son K, Lee J. Anti-obesity effect of Dioscorea nipponica Makino with lipase-inhibitory activity in rodents.  Biosci Biotechnol Biochem. 2003;  67 1451-1456
  • 67 Won S, Kim S, Kim Y, Lee P, Ryu J, Kim J. Licochalcone A: a lipase inhibitor from the roots of Glycyrrhiza uralensis.  Food Res Int. 2007;  40 1046-1050
  • 68 Ono Y, Hattori E, Fukaya Y, Imai S, Ohizumi Y. Anti-obesity effect of Nelumbo nucifera leaves extract in mice and rats.  J Ethnopharmacol. 2006;  106 238-244
  • 69 Kim H, Kang M. Screening of Korean medicinal plants for lipase inhibitory activity. PTR.  Phytother Res. 2005;  19 359-361
  • 70 Moreno D, Ripoll C, Ilic N, Poulev A, Aubin C, Raskin I. Inhibition of lipid metabolic enzymes using Mangifera indica extracts.  J Food Agric Environ. 2006;  4 21-26
  • 71 Lei F, Zhang X N, Wang W, Xing D M, Xie W D, Su H. Evidence of anti-obesity effects of the pomegranate leaf extract in high-fat diet induced obese mice.  Int J Obes. 2007;  31 1023-1029
  • 72 Yang H, Kim Y, Bae H, Cho K, Shin J, Kim N, Kim D. Rhei Rhizoma and Chunghyuldan inhibit pancreatic lipase.  Nat Prod Sci. 2003;  9 38-43
  • 73 Zheng C, Duan Y, Gao J, Ruan Z. Screening for anti-lipase properties of 37 traditional Chinese medicinal herbs.  J Chin Med Assoc. 2010;  73 319-324
  • 74 Yoshikawa M, Shimoda H, Nishida N, Takada M, Matsuda H. Salacia reticulata and its polyphenolic constituents with lipase inhibitory and lipolytic activities have mild antiobesity effects in rats.  J Nutr. 2002;  132 1819-1824
  • 75 Terra X, Montagut G, Bustos M, Llopiz N, Ardvol A, Blad C. Grape-seed procyanidins prevent low-grade inflammation by modulating cytokine expression in rats fed a high-fat diet.  J Nutr Biochem. 2009;  20 210-218
  • 76 García-Lafuente A, Guillamón E, Villares A, Rostagno M, Martínez J. Flavonoids as anti-inflammatory agents: implications in cancer and cardiovascular disease.  Inflamm Res. 2009;  58 537-552
  • 77 Kawaguchi K, Mizuno T, Aida K, Uchino K. Hesperidin as an inhibitor of lipases from porcine pancreas and Pseudomonas.  Biosci Biotechnol Biochem. 1997;  61 102-104
  • 78 He F, Pan Q, Shi Y, Duan C. Biosynthesis and genetic regulation of proanthocyanidins in plants.  Molecules. 2008;  13 2674-2692
  • 79 Quesada H, del Bas J M, Pajuelo D, Daz S, Fernandez-Larrea J, Pinent M. Grape seed proanthocyanidins correct dyslipidemia associated with a high-fat diet in rats and repress genes controlling lipogenesis and VLDL assembling in liver.  Int J Obes. 2009;  33 1007-1012
  • 80 Lee Y, Cho E, Tanaka T, Yokozawa T. Inhibitory activities of proanthocyanidins from persimmon against oxidative stress and digestive enzymes related to diabetes.  J Nutr Sci Vitaminol. 2007;  53 287-292
  • 81 de la Iglesia R, Milagro F I, Campion J, Boque N, Martinez J A. Healthy properties of proanthocyanidins.  Biofactors. 2010;  36 159-168
  • 82 Yamamoto M, Shimura S, Itoh Y, Ohsaka T, Egawa M, Inoue S. Anti-obesity effects of lipase inhibitor CT-II, an extract from edible herbs, Nomame Herba, on rats fed a high-fat diet.  Int J Obes. 2000;  24 758-764
  • 83 Ikeda I, Tsuda K, Suzuki Y, Kobayashi M, Unno T, Tomoyori H. Tea catechins with a galloyl moiety suppress postprandial hypertriacylglycerolemia by delaying lymphatic transport of dietary fat in rats.  J Nutr. 2005;  135 155-159
  • 84 Moreno D, Ilic N, Poulev A, Raskin I. Effects of Arachis hypogaea nutshell extract on lipid metabolic enzymes and obesity parameters.  Life Sci. 2006;  78 2797-2803
  • 85 Han L K, Kimura Y, Kawashima M, Takaku T, Taniyama T, Hayashi T. Anti-obesity effects in rodents of dietary teasaponin, a lipase inhibitor.  Int J Obes. 2001;  25 1459-1464
  • 86 Tanaka T, Matsuo Y, Kouno I. Chemistry of secondary polyphenols produced during processing of tea and selected foods.  Int J Mol Sci. 2009;  11 14-34
  • 87 Koo S, Noh S. Green tea as inhibitor of the intestinal absorption of lipids: potential mechanism for its lipid-lowering effect.  J Nutr Biochem. 2007;  18 179-183
  • 88 Juhel C, Armand M, Pafumi Y, Rosier C, Vandermander J, Lairon D. Green tea extract (AR25) inhibits lipolysis of triglycerides in gastric and duodenal medium in vitro.  J Nutr Biochem. 2000;  11 45-51
  • 89 Bose M, Lambert J, Ju J, Reuhl K, Shapses S, Yang C. The major green tea polyphenol, (−)-epigallocatechin-3-gallate, inhibits obesity, metabolic syndrome, and fatty liver disease in high-fat-fed mice.  J Nutr. 2008;  138 1677-1683
  • 90 Nakai M, Fukui Y, Asami S, Toyoda-Ono Y, Iwashita T, Shibata H. Inhibitory effects of oolong tea polyphenols on pancreatic lipase in vitro.  J Agric Food Chem. 2005;  53 4593-4598
  • 91 Toyoda-Ono Y, Yoshimura M, Nakai M, Fukui Y, Asami S, Shibata H. Suppression of postprandial hypertriglyceridemia in rats and mice by oolong tea polymerized polyphenols.  Biosci Biotechnol Biochem. 2007;  71 971-976
  • 92 Ikeda I. Multifunctional effects of green tea catechins on prevention of the metabolic syndrome.  Asia Pac J Clin Nutr. 2008;  17 273-274
  • 93 Kobayashi M, Ichitani M, Suzuki Y, Unno T, Sugawara T, Yamahira T. Black-tea polyphenols suppress postprandial hypertriacylglycerolemia by suppressing lymphatic transport of dietary fat in rats.  J Agric Food Chem. 2009;  57 7131-7136
  • 94 Kusano R, Andou H, Fujieda M, Tanaka T, Matsuo Y, Kouno I. Polymer-like polyphenols of black tea and their lipase and amylase inhibitory activities.  Chem Pharm Bull. 2008;  56 266-272
  • 95 Uchiyama S, Taniguchi Y, Saka A, Yoshida A, Yajima H. Prevention of diet-induced obesity by dietary black tea polyphenols extract in vitro and in vivo.  Nutrition. 2011;  27 287-292
  • 96 Tanaka K, Tamaru S, Nishizono S, Miyata Y, Tamaya K, Matsui T. Hypotriacylglycerolemic and antiobesity properties of a new fermented tea product obtained by tea-rolling processing of third-crop green tea (Camellia sinensis) leaves and Loquat (Eriobotrya japonica) leaves.  Biosci Biotechnol Biochem. 2010;  74 1606-1612
  • 97 Kurihara H, Shibata H, Fukui Y, Kiso Y, Xu J, Yao X. Evaluation of the hypolipemic property of Camellia sinensisvar. ptilophylla on postprandial hypertriglyceridemia.  J Agric Food Chem. 2006;  54 4977-4981
  • 98 Guo Y, Wu G, Su X, Yang H, Zhang J. Antiobesity action of a daidzein derivative on male obese mice induced by a high-fat diet.  Nutr Res. 2009;  29 656-663
  • 99 Martins F, Noso T, Porto V, Curiel A, Gambero A, Bastos D H M. Maté tea inhibits in vitro pancreatic lipase activity and has hypolipidemic effect on high-fat diet-induced obese mice.  Obesity. 2010;  18 42-47
  • 100 Sugimoto S, Nakamura S, Yamamoto S, Yamashita C, Oda Y, Matsuda H. Brazilian natural medicines. III. structures of triterpene oligoglycosides and lipase inhibitors from mate, leaves of Ilex paraguariensis.  Chem Pharm Bull. 2009;  57 257-261
  • 101 Yoshikawa M, Shimoda H, Nishida N, Takada M, Matsuda H. Salacia reticulata and its polyphenolic constituents with lipase inhibitory and lipolytic activities have mild antiobesity effects in rats.  J Nutr. 2002;  132 1819-1824
  • 102 Akase T, Shimada T, Harasawa Y, Akase T, Ikeya Y, Nagai E. Preventive effects of Salacia reticulata on obesity and metabolic disorders in TSOD mice.  Evid Based Complement Alternat Med. DOI: 10.1093/ecam/nep052 , advance online publication 8 June 2009
  • 103 Zhang J, Kang M, Kim M, Kim M, Song J, Lee Y. Pancreatic lipase inhibitory activity of Taraxacum officinale in vitro and in vivo.  Nutr Res Pract. 2008;  2 200-203
  • 104 Zhao J, Pang Y, Dixon R. The mysteries of proanthocyanidin transport and polymerization.  Plant Physiol. 2010;  153 1-18
  • 105 McDougall G J, Kulkarni N N, Stewart D. Berry polyphenols inhibit pancreatic lipase activity in vitro.  J Food Chem. 2009;  115 193-199
  • 106 Sparg S G, Light M E, van Staden J. Biological activities and distribution of plant saponins.  J Ethnopharmacol. 2004;  94 219-243
  • 107 Vincken J, Heng L, de Groot A, Gruppen H. Saponins, classification and occurrence in the plant kingdom.  Phytochemistry. 2007;  68 275-297
  • 108 Haralampidis K, Trojanowska M, Osbourn A. Biosynthesis of triterpenoid saponins in plants.  Adv Biochem Eng Biotechnol. 2002;  75 31
  • 109 Karu N, Reifen R, Kerem Z. Weight gain reduction in mice fed Panax ginseng saponin, a pancreatic lipase inhibitor.  J Agric Food Chem. 2007;  55 2824-2828
  • 110 Kimura H, Ogawa S, Jisaka M, Kimura Y, Katsube T, Yokota K. Identification of novel saponins from edible seeds of Japanese horse chestnut (Aesculus turbinata Blume) after treatment with wooden ashes and their nutraceutical activity.  J Pharm Biomed Anal. 2006;  41 1657-1665
  • 111 Hu J, Zhu X, Han L, Saito M, Sun Y, Yoshikawa M. Anti-obesity effects of escins extracted from the seeds of Aesculus turbinata BLUME (Hippocastanaceae).  Chem Pharm Bull. 2008;  56 12-16
  • 112 Kimura H, Ogawa S, Katsube T, Jisaka M, Yokota K. Antiobese effects of novel saponins from edible seeds of Japanese horse chestnut (Aesculus turbinata BLUME) after treatment with wood ashes.  J Agric Food Chem. 2008;  56 4783-4788
  • 113 Song M, Lv N, Kim E, Kwon K, Yoo Y, Kim J. Antiobesity activity of aqueous extracts of Rhizoma Dioscoreae tokoronis on high-fat diet-induced obesity in mice.  J Med Food. 2009;  12 304-309
  • 114 Li F, Li W, Fu H, Zhang Q, Koike K. Pancreatic lipase-inhibiting triterpenoid saponins from fruits of Acanthopanax senticosus.  Chem Pharm Bull. 2007;  55 1087-1089
  • 115 Jiang W, Li W, Han L, Liu L, Zhang Q, Zhang S. Biologically active triterpenoid saponins from Acanthopanax senticosus.  J Nat Prod. 2006;  69 1577-1581
  • 116 Yoshizumi K, Hirano K, Ando H, Hirai Y, Ida Y, Tsuji T. Lupane-type saponins from leaves of Acanthopanax sessiliflorus and their inhibitory activity on pancreatic lipase.  J Agric Food Chem. 2006;  54 335-341
  • 117 Lee I, Lee J, Baek N, Kim D. Antihyperlipidemic effect of crocin isolated from the fructus of Gardenia jasminoides and its metabolite Crocetin.  Biol Pharm Bull. 2005;  28 2106-2110
  • 118 Sheng L, Qian Z, Zheng S, Xi L. Mechanism of hypolipidemic effect of crocin in rats: crocin inhibits pancreatic lipase.  Eur J Pharmacol. 2006;  543 116-122
  • 119 Zheng Q, Li W, Han L, Koike K. Pancreatic lipase-inhibiting triterpenoid saponins from Gypsophila oldhamiana.  Chem Pharm Bull. 2007;  55 646-650
  • 120 Han L, Zheng Y, Yoshikawa M, Okuda H, Kimura Y. Anti-obesity effects of chikusetsusaponins isolated from Panax japonicus rhizomes.  BMC Complement Alternat Med. 2005;  5 9
  • 121 Lee Y, Cha B, Yamaguchi K, Choi S, Yonezawa T, Teruya T. Effects of Korean white ginseng extracts on obesity in high-fat diet-induced obese mice.  Cytotechnology. 2010;  62 367-376
  • 122 Liu W, Zheng Y, Han L, Wang H, Saito M, Ling M. Saponins (Ginsenosides) from stems and leaves of Panax quinquefolium prevented high-fat diet-induced obesity in mice.  Phytomedicine. 2008;  15 1140-1145
  • 123 Xu B, Han L, Zheng Y, Lee J, Sung C. In vitro inhibitory effect of triterpenoidal saponins from Platycodi Radix on pancreatic lipase.  Arch Pharm Res. 2005;  28 180-185
  • 124 Zhao H, Kim Y. Determination of the kinetic properties of platycodin D for the inhibition of pancreatic lipase using a 1,2-diglyceride-based colorimetric assay.  Arch Pharm Res. 2004;  27 968-972
  • 125 Han L, Zheng Y, Xu B, Okuda H, Kimura Y. Saponins from platycodi radix ameliorate high fat diet-induced obesity in mice.  J Nutr. 2002;  132 2241-2245
  • 126 Kim J, Moon K, Seo K, Park K, Choi M, Do G. Supplementation of SK1 from Platycodi radix ameliorates obesity and glucose intolerance in mice fed a high-fat diet.  J Med Food. 2009;  12 629-636
  • 127 Morikawa T, Xie Y, Asao Y, Okamoto M, Yamashita C, Muraoka O. Oleanane-type triterpene oligoglycosides with pancreatic lipase inhibitory activity from the pericarps of Sapindus rarak.  Phytochemistry. 2009;  70 1166-1172
  • 128 Zheng Q, Koike K, Han L, Okuda H, Nikaido T. New biologically active triterpenoid saponins from Scabiosa tschiliensis.  J Nat Prod. 2004;  67 604-613
  • 129 Guo T, Liu Q, Wang P, Zhang L, Zhang W, Li Y. Facile synthesis of three bidesmosidic oleanolic acid saponins with strong inhibitory activity on pancreatic lipase.  Carbohydr Res. 2009;  344 1167-1174
  • 130 Yoshikawa M, Morikawa T, Yamamoto K, Kato Y, Nagatomo A, Matsuda H. Floratheasaponins A–C, acylated oleanane-type triterpene oligoglycosides with anti-hyperlipidemic activities from flowers of the tea plant (Camellia sinensis).  J Nat Prod. 2005;  68 1360-1365
  • 131 Jäger S, Laszczyk M, Scheffler A. A preliminary pharmacokinetic study of betulin, the main pentacyclic triterpene from extract of outer bark of birch (Betulae alba cortex).  Molecules. 2008;  13 3224-3235
  • 132 Kim S, Park K. Effects of Panax ginseng extract on lipid metabolism in humans.  Pharmacol Res. 2003;  48 511-513
  • 133 Chantre P, Lairon D. Recent findings of green tea extract AR25 (Exolise) and its activity for the treatment of obesity.  Phytomedicine. 2002;  9 3-8
  • 134 Lee Y, Chung H, Kwak H, Yoon S. The effects of A. senticosus supplementation on serum lipid profiles, biomarkers of oxidative stress, and lymphocyte DNA damage in postmenopausal women.  Biochem Biophys Res Commun. 2008;  375 44-48
  • 135 Sugiyama H, Akazome Y, Shoji T, Yamaguchi A, Yasue M, Kanda T. Oligomeric procyanidins in apple polyphenol are main active components for inhibition of pancreatic lipase and triglyceride absorption.  J Agric Food Chem. 2007;  55 4604-4609
  • 136 Moreno D, Ilic N, Poulev A, Raskin I. Effects of Arachis hypogaea nutshell extract on lipid metabolic enzymes and obesity parameters.  Life Sci. 2006;  78 2797-2803
  • 137 He R, Chen L, Lin B, Matsui Y, Yao X, Kurihara H. Beneficial effects of oolong tea consumption on diet-induced overweight and obese subjects.  Chin J Integr Med. 2009;  15 34-41
  • 138 Sharma N, Sharma V, Seo S. Screening of some medicinal plants for anti-lipase activity.  J Ethnopharmacol. 2005;  97 453-456
  • 139 Möller N, Roos N, Schrezenmeir J. Lipase inhibitory activity in alcohol extracts of worldwide occurring plants and propolis.  Phytother Res. 2009;  23 585-586
  • 140 Kobayashi K, Ihara S, Kobata A, Itoh K, Kusunoki N, Yoshizaki F. Inhibitory effect of Myrica bark on lipase activity in mouse plasma and gastrointestinal tract.  J Med Food. 2008;  11 289-293
  • 141 Kobayashi K, Yamada K, Murata T, Hasegawa T, Takano F, Koga K. Constituents of Rhodiola rosea showing inhibitory effect on lipase activity in mouse plasma and alimentary canal.  Planta Med. 2008;  74 1716-1719
  • 142 Birari R, Roy S, Singh A, Bhutani K. Pancreatic lipase inhibitory alkaloids of Murraya koenigii leaves.  Nat Prod Commun. 2009;  4 1089-1092
  • 143 Ekanem A P, Wang M, Simon J E, Moreno D A. Antiobesity properties of two African plants (Afromomum meleguetta and Spilanthes acmella) by pancreatic lipase inhibition.  Phytother Res. 2007;  21 1253-1255
  • 144 Shin J, Han M, Song M, Baek N, Kim D. 5-Hydroxy-7-(4′-hydroxy-3′-methoxyphenyl)-1-phenyl-3-heptanone: a pancreatic lipase inhibitor isolated from Alpinia officinarum.  Biol Pharm Bull. 2004;  27 138-140
  • 145 Shin J, Han M, Kim D. 3-Methylethergalangin isolated from Alpinia officinarum inhibits pancreatic lipase.  Biol Pharm Bull. 2003;  26 854-857
  • 146 Jang D, Lee G, Kim J, Lee Y, Kim J, Kim Y. A new pancreatic lipase inhibitor isolated from the roots of Actinidia arguta.  Arch Pharm Res. 2008;  31 666-670
  • 147 Han L, Sumiyoshi M, Zhang J, Liu M, Zhang X, Zheng Y. Anti-obesity action of Salix matsudana leaves (Part 1). Anti-obesity action by polyphenols of Salix matsudana in high fat-diet treated rodent animals.  Phytother Res. 2003;  17 1188-1194
  • 148 Tucci S A, Boyland E J, Halford J C. The role of lipid and carbohydrate digestive enzyme inhibitors in the management of obesity: a review of current and emerging therapeutic agents.  Diabetes Metab Syndr Obes. 2010;  3 125-143
  • 149 Osbourn A. Saponins in cereals.  Phytochemistry. 2003;  62 1-4
  • 150 Han L, Nose R, Li W, Gong X, Zheng Y, Yoshikawa M. Reduction of fat storage in mice fed a high-fat diet long term by treatment with saponins prepared from Kochia scoparia fruit.  Phytother Res. 2006;  20 877-882
  • 151 Oishi Y, Sakamoto T, Udagawa H, Taniguchi H, Kobayashi-Hattori K, Ozawa Y. Inhibition of increases in blood glucose and serum neutral fat by Momordica charantia saponin fraction.  Biosci Biotechnol Biochem. 2007;  71 735-740
  • 152 Chang X, Li W, Jia Z, Satou T, Fushiya S, Koike K. Biologically active triterpenoid saponins from Ardisia japonica.  J Nat Prod. 2007;  70 179-187
  • 153 Kimura H, Ogawa S, Katsube T, Jisaka M, Yokota K. Antiobese effects of novel saponins from edible seeds of Japanese horse chestnut (Aesculus turbinata BLUME) after treatment with wood ashes.  J Agric Food Chem. 2008;  56 4783-4788
  • 154 Yamamoto M, Shimura S, Itoh Y, Ohsaka T, Egawa M, Inoue S. Anti-obesity effects of lipase inhibitor CT-II, an extract from edible herbs, Nomame Herba, on rats fed a high-fat diet.  Int J Obes. 2000;  24 758-764
  • 155 Shimoda H, Seki E, Aitani M. Inhibitory effect of green coffee bean extract on fat accumulation and body weight gain in mice.  BMC Complement Alternat Med. 2006;  6 9
  • 156 Kurihara H, Asami S, Shibata H, Fukami H, Tanaka T. Hypolipemic effect of Cyclocarya paliurus (Batal) Iljinskaja in lipid-loaded mice.  Biol Pharm Bull. 2003;  26 383-385
  • 157 Kwon C, Sohn H, Kim S, Kim J, Son K, Lee J. Anti-obesity effect of Dioscorea nipponica Makino with lipase-inhibitory activity in rodents.  Biosci Biotechnol Biochem. 2003;  67 1451-1456
  • 158 Cha Y, Rhee S, Heo Y. Acanthopanax senticosus extract prepared from cultured cells decreases adiposity and obesity indices in C57BL/6J mice fed a high fat diet.  J Med Food. 2004;  7 422-429
  • 159 Yoshizumi K, Murota K, Watanabe S, Tomi H, Tsuji T, Terao J. Chiisanoside is not absorbed but inhibits oil absorption in the small intestine of rodents.  Biosci Biotechnol Biochem. 2008;  72 1126-1129
  • 160 Yajima H, Noguchi T, Ikeshima E, Shiraki M, Kanaya T, Tsuboyama-Kasaoka N. Prevention of diet-induced obesity by dietary isomerized hop extract containing isohumulones, in rodents.  Int J Obes. 2005;  29 991-997
  • 161 Sugiyama H, Akazome Y, Shoji T, Yamaguchi A, Yasue M, Kanda T. Oligomeric procyanidins in apple polyphenol are main active components for inhibition of pancreatic lipase and triglyceride absorption.  J Agric Food Chem. 2007;  55 4604-4609
  • 162 Ono Y, Hattori E, Fukaya Y, Imai S, Ohizumi Y. Anti-obesity effect of Nelumbo nucifera leaves extract in mice and rats.  J Ethnopharmacol. 2006;  106 238-244
  • 163 Harach T, Aprikian O, Monnard I, Moulin J, Membrez M, Bolor J. Rosemary (Rosmarinus officinalis L.) leaf extract limits weight gain and liver steatosis in mice fed a high-fat diet.  Planta Med. 2010;  76 566-571

Prof. J. Alfredo Martinez

Department of Nutrition and Food Sciences, Physiology and Toxicology
University of Navarra

c/Irunlarrea 1

31008 Pamplona

Spain

Phone: +34 9 48 42 56 00

Fax: +34 9 48 42 56 49

Email: jalfmtz@unav.es

    >