Planta Med 2012; 78(6): 582-588
DOI: 10.1055/s-0031-1298228
Natural Product Chemistry
Original Papers
© Georg Thieme Verlag KG Stuttgart · New York

Depsidones, Aromatase Inhibitors and Radical Scavenging Agents from the Marine-Derived Fungus Aspergillus unguis CRI282-03

Sanya Sureram1 , 2 , Suthep Wiyakrutta3 , Nattaya Ngamrojanavanich2 , Chulabhorn Mahidol1 , 4 , Somsak Ruchirawat1 , 4 , 5 , Prasat Kittakoop1 , 4 , 5
  • 1Chulabhorn Research Institute, Laksi, Bangkok, Thailand
  • 2Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
  • 3Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, Thailand
  • 4Chulabhorn Graduate Institute, Chemical Biology Program, Laksi, Bangkok, Thailand
  • 5Center of Excellence on Environmental Health and Toxicology, CHE, Ministry of Education, Thailand
Further Information

Publication History

received Sept. 20, 2011 revised January 3, 2012

accepted January 12, 2012

Publication Date:
03 February 2012 (online)

Abstract

Three new depsidones (1, 3, and 4), a new diaryl ether (5), and a new natural pyrone (9) (synthetically known), together with three known depsidones, nidulin (6), nornidulin (7), and 2-chlorounguinol (8), were isolated from the marine-derived fungus Aspergillus unguis CRI282-03. Aspergillusidone C (4) showed the most potent aromatase inhibitory activity with the IC50 value of 0.74 µM, while depsidones 1, 3, 68 inhibited aromatase with IC50 values of 1.2–11.2 µM. It was found that the structural feature of depsidones, not their corresponding diaryl ether derivatives (e.g. 5), was important for aromatase inhibitory activity. Aspergillusidones A (1) and B (3) showed radical scavenging activity in the XXO assay with IC50 values of 16.0 and < 15.6 µM, respectively. Compounds 1 and 37 were mostly inactive or showed only weak cytotoxic activity against HuCCA-1, HepG2, A549, and MOLT-3 cancer cell lines.

Supporting Information

References

  • 1 Brueggemeier R W, Hackett J C, Diaz-Cruz E S. Aromatase inhibitors in the treatment of breast cancer.  Endocr Rev. 2005;  26 331-345
  • 2 Elledge R M, Osborne C K. Oestrogen receptors and breast cancer.  BMJ. 1997;  314 1843-1844
  • 3 Goetz M E, Luch A. Reactive species: a cell damaging rout assisting to chemical carcinogens.  Cancer Lett. 2008;  266 73-83
  • 4 Lippman S M, Benner S E, Hong W K. Cancer chemoprevention.  J Clin Oncol. 1994;  12 851-873
  • 5 Kasettrathat C, Ngamrojanavanich N, Wiyakrutta S, Mahidol C, Ruchirawat S, Kittakoop P. Cytotoxic and antiplasmodial substances from marine-derived fungi, Nodulisporium sp. and CRI247-01.  Phytochemistry. 2008;  69 2621-2626
  • 6 Almeida C, Part N, Bouhired S, Kehraus S, König G M. Stachylines A–D from the sponge-derived fungus Stachylidium sp.  J Nat Prod. 2011;  74 21-25
  • 7 Lee S U, Asami Y, Lee D, Jang J H, Ahn J S, Oh H. Protuboxepins A and B and protubonines A and B from the marine-derived fungus Aspergillus sp. SF-5044.  J Nat Prod. 2011;  74 1284-1287
  • 8 Jiang T, Li T, Li J, Fu H Z, Pei Y H, Lin W H. Cerebroside analogues from marine-derived fungus Aspergillus flavipes.  J Asian Nat Prod Res. 2004;  6 249-257
  • 9 Khumkomkhet P, Kanokmedhakul S, Kanokmedhakul K, Hahnvajanawong C, Soytong K. Antimalarial and cytotoxic depsidones from the fungus Chaetomium brasiliense.  J Nat Prod. 2009;  72 1487-1491
  • 10 Kokubun T, Shiu W K, Gibbons S. Inhibitory activities of lichen-derived compounds against methicillin- and multidrug-resistant Staphylococcus aureus.  Planta Med. 2007;  73 176-179
  • 11 Chomcheon P, Wiyakrutta S, Sriubolmas N, Ngamrojanavanich N, Kengtong S, Mahidol C, Ruchirawat S, Kittakoop P. Aromatase inhibitory, radical scavenging, and antioxidant activities of depsidones and diaryl ethers from the endophytic fungus Corynespora cassiicola L36.  Phytochemistry. 2009;  70 407-413
  • 12 Vlietinck A J, De Bruyne T, Apers S, Pieters L A. Plant-derived leading compounds for chemotherapy of human immunodeficiency virus (HIV) infection.  Planta Med. 1998;  64 97-109
  • 13 Yuan T, Yang S P, Zhang H Y, Liao S G, Wang W, Wu Y, Tang X C, Yue J M. Phenolic compounds with cell protective activity from the fruits of Livistona chinensis.  J Asian Nat Prod Res. 2009;  11 243-249
  • 14 Abdou R, Scherlach K, Dahse H M, Sattler I, Hertweck C. Botryorhodines A–D, antifungal and cytotoxic depsidones from Botryosphaeria rhodina, an endophyte of the medicinal plant Bidens pilosa.  Phytochemistry. 2010;  71 110-116
  • 15 de Hoog G S, Guarro J, Gene J, Figueras M J. Atlas of clinical fungi. 2nd edition. Washington: ASM Press; 2001
  • 16 White T J, Bruns T, Lee S, Taylor J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innes M A, Gelfand D H, Sninky JJ,White T J, editors PCR protocols: a guide to methods and applications. San Diego: Academic Press; 1990: 315-322
  • 17 Prachya S, Wiyakrutta S, Sriubolmas N, Ngamrojanavanich N, Mahidol C, Ruchirawat S, Kittakoop P. Cytotoxic mycoepoxydiene derivatives from an endophytic fungus Phomopsis sp. isolated from Hydnocarpus anthelminthicus.  Planta Med. 2007;  73 1418-1420
  • 18 Zhang Z, Schwartz S, Wagner L, Miller W. A greedy algorithm for aligning DNA sequences.  J Comput Biol. 2000;  7 203-214
  • 19 Carmichael J, DeGraff W G, Gazdar A F, Minna J D, Mitchell J B. Evaluation of a tetrazolium-based semiautomated colorimetric assay: assessment of chemosensitivity testing.  Cancer Res. 1987;  47 936-942
  • 20 Doyle A, Griffiths J B. Mammalian cell culture: essential techniques. Chichester: John Wiley & Sons; 1997
  • 21 Gerhäuser C, Klimo K, Heiss E, Neumann I, Gamal-Eldeen A, Knauft J, Liu G Y, Sitthimonchai S, Frank N. Mechanism-based in vitro screening of potential cancer chemopreventive agents.  Mutat Res. 2003;  523–524 163-172
  • 22 Stresser D M, Turner S D, McNamara J, Stocker P, Miller V P, Crespi C L, Patten C J. A high-throughput screen to identify inhibitors of aromatase (CYP19).  Anal Biochem. 2000;  284 427-430
  • 23 Dean F M, Roberts J C, Robertson A. Chemistry of fungi. XXII. Nidulin and nornidulin (ustin): chlorine-containing metabolic products of Aspergillus nidulans.  J Chem Soc. 1954;  1432-1439
  • 24 Kawahara N, Nakajima S, Satoh Y, Yamazaki M, Kawai K I. Studies on fungal products. XVIII: isolation and structures of a new fungal depsidone related to nidulin and a new phthalide from Emericella unguis.  Chem Pharm Bull. 1988;  36 1970-1975
  • 25 Aree T, Surerum S, Ngamrojanavanich N, Kittakoop P. (E)-2,4,7-Trichloro-3-hydroxy-8-methoxy-1,9-dimethyl-6-(1-methyl-1-propenyl)-11H-dibenzo[b,e][1,4]dioxepin-11-one monohydrate (nidulin monohydrate).  Acta Crystallogr. 2009;  E65 o2470-o2471
  • 26 Lang G, Cole A L, Blunt J W, Robinson W T, Munro M H. Excelsione, a depsidone from an endophytic fungus isolated from the New Zealand endemic tree Knightia excels.  J Nat Prod. 2007;  70 310-311
  • 27 Nair M S R, Carey S T. Metabolites of phyrenomycetes II: Nectriapyrone, an antibiotic monoterpenoid.  Tetrahedron Lett. 1975;  16 1655-1658
  • 28 Abramson H N, Wormser H C. Synthesis of nectriapyrone.  J Heterocyclic Chem. 1981;  18 363-366

Dr. Prasat Kittakoop

Chulabhorn Research Institute

54 Vibhavadi-Rangsit Road

Bangkok 10210

Thailand

Phone: +66 8 69 75 57 77

Fax: +66 25 74 06 22 ext. 15 13

Email: prasat@cri.or.th

>