Horm Metab Res 2004; 36(7): 470-473
DOI: 10.1055/s-2004-825750
Original Basic
© Georg Thieme Verlag Stuttgart · New York

Toll-like Receptor 2 and Toll-like Receptor 4 Expression in Human Adrenals

S.  R.  Bornstein1 , R.  R.  Schumann2 , V.  Rettori3 , S.  M.  McCann4 , K.  Zacharowski5
  • 1Department of Endocrinology, Diabetes and Rheumatology, University of Düsseldorf, Germany
  • 2Department of Hygiene and Microbiology, Charité, Berlin, Germany
  • 3Centro de Estudios Farmacologicos y Botanicos, Consejo Nacional de Investigaciones Cientificas y Tecnicas, Buenos Aires, Argentina
  • 4Pennington Biomedical Research Center, Baton Rouge, LA, USA
  • 5Department of Anesthesiology, Heinrich Heine University, Düsseldorf, Germany
Further Information

Publication History

Received 4 April 2004

Acceped after Revision 25 May 2004

Publication Date:
11 August 2004 (online)

Abstract

Toll-like receptors (TLRs) are key elements in the innate immune response, functioning as pattern-recognition receptors for the detection and response to endotoxins and other microbial ligands. Inflammatory cytokines play an important role in the activation of the hypothalamic-pituitary-adrenal HPA axis during inflammation and sepsis. The newly recognized major role of TLR2 and TLR4 and the adrenal stress response during critical illnesses such as inflammation and sepsis demand comprehensive analysis of their interactions. Therefore, we analyzed TLR2 and TLR4 expression in human adrenal glands. Western blot analysis demonstrated the expression of TLR2 and TLR4 in the human adrenocortical cell line NCI-H295. Immunohistochemical analysis of normal human adrenal glands revealed TLR2 and TLR4 expression in the adrenal cortex, but not in the adrenal medulla. Considering the crucial role of the HPA axis and the innate immune response during acute sepsis or septic shock, elucidating the functional interaction of these systems should be of great clinical relevance.

References

  • 1 Chrousos G P. The hypothalamic-pituitary-adrenal axis and immune-mediated inflammation.  N Engl J Med. 1995;  332 1351-1362
  • 2 Besedovsky H O, del Rey A. Immune-neuro-endocrine interactions: facts and hypotheses.  Endocr Rev. 1996;  17 64-102
  • 3 Wilckens T, De Rijk R. Glucocorticoids and immune function: unknown dimensions and new frontiers.  Immunol Today. 1997;  18 418-424
  • 4 Boumpas D T, Chrousos G P, Wilder R L, Cupps T R, Balow J E. Glucocorticoid therapy for immune-mediated diseases: basic and clinical correlates.  Ann Intern Med. 1993;  119 1198-1208
  • 5 MacPhee I A, Antoni F A, Mason D W. Spontaneous recovery of rats from experimental allergic encephalomyelitis is dependent on regulation of the immune system by endogenous adrenal corticosteroids.  J Exp Med. 1989;  169 431-445
  • 6 Sternberg E M, Hill J M, Chrousos G P, Kamilaris T, Listwak S J, Gold P W, Wilder R L. Inflammatory mediator-induced hypothalamic-pituitary-adrenal axis activation is defective in streptococcal cell wall arthritis-susceptible Lewis rats.  Proc Natl Acad Sci U S A. 1989;  86 2374-2378
  • 7 Ehrhart-Bornstein M, Hinson J P, Bornstein S R, Scherbaum W A, Vinson G P. Intraadrenal interactions in the regulation of adrenocortical steroidogenesis.  Endocr Rev. 1998;  19 101-143
  • 8 Abe R, Shimosegawa T, Kimura K, Abe T, Kashimura J, Koizumi M, Toyota T. The role of endogenous glucocorticoids in rat experimental models of acute pancreatitis.  Gastroenterology. 1995;  109 933-943
  • 9 Bornstein S R, Chrousos G P. Clinical review 104: Adrenocorticotropin (ACTH)- and non-ACTH-mediated regulation of the adrenal cortex: neural and immune inputs.  J Clin Endocrinol Metab. 1999;  84 1729-1736
  • 10 Willenberg H S, Stratakis C A, Marx C, Ehrhart-Bornstein M, Chrousos G P, Bornstein S R. Aberrant interleukin-1 receptors in a cortisol-secreting adrenal adenoma causing Cushing's syndrome.  N Engl J Med. 1998;  339 27-31
  • 11 Takeda K, Kaisho T, Akira S. Toll-like receptors.  Annu Rev Immunol. 2003;  21 335-376
  • 12 Imler J L, Zheng L. Biology of Toll receptors: lessons from insects and mammals.  J Leukoc Biol. 2004;  75 18-26
  • 13 Imler J L, Hoffmann J A. Toll receptors in innate immunity.  Trends Cell Biol. 2001;  11 304-311
  • 14 Rock F L, Hardiman G, Timans J C, Kastelein R A, Bazan J F. A family of human receptors structurally related to Drosophila Toll.  Proc Natl Acad Sci USA. 1998;  95 588-593
  • 15 Chaudhary P M, Ferguson C, Nguyen V, Nguyen O, Massa H F, Eby M, Jasmin A, Trask B J, Hood L, Nelson P S. Cloning and characterization of two Toll/Interleukin-1 receptor-like genes TIL3 and TIL4: evidence for a multi-gene receptor family in humans.  Blood. 1998;  91 4020-4027
  • 16 Medzhitov R, Preston-Hurlburt P, Janeway C A Jr. A human homologue of the Drosophila Toll protein signals activation of adaptive immunity.  Nature. 1997;  388 394-397
  • 17 Kaisho T, Akira S. Critical roles of Toll-like receptors in host defense.  Crit Rev Immunol. 2000;  20 393-405
  • 18 Bowie A, O'Neill L A. The interleukin-1 receptor/Toll-like receptor superfamily: signal generators for pro-inflammatory interleukins and microbial products.  J Leukoc Biol. 2000;  67 508-514
  • 19 Akira S, Takeda K, Kaisho T. Toll-like receptors: critical proteins linking innate and acquired immunity.  Nat Immunol. 2001;  2 675-680
  • 20 O'Neill L. The Toll/interleukin-1 receptor domain: a molecular switch for inflammation and host defence.  Biochem Soc Trans. 2000;  28 557-563
  • 21 Poltorak A, He X, Smirnova I, Liu M Y, Van Huffel C, Du X, Birdwell D, Alejos E, Silva M, Galanos C, Freudenberg M, Ricciardi-Castagnoli P, Layton B, Beutler B. Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene.  Science. 1998;  282 2085-2088
  • 22 Hoshino K, Takeuchi O, Kawai T, Sanjo H, Ogawa T, Takeda Y, Takeda K, Akira S. Cutting edge: Toll-like receptor 4 (TLR4)-deficient mice are hyporesponsive to lipopolysaccharide: evidence for TLR4 as the Lps gene product.  J Immunol. 1999;  162 3749-3752
  • 23 Takeuchi O, Hoshino K, Akira S. Cutting edge: TLR2-deficient and MyD88-deficient mice are highly susceptible to Staphylococcus aureus infection.  J Immunol. 2000;  165 5392-5396
  • 24 Kurt-Jones E A, Popova L, Kwinn L, Haynes L M, Jones L P, Tripp R A, Walsh E E, Freeman M W, Golenbock D T, Anderson L J, Finberg R W. Pattern recognition receptors TLR4 and CD14 mediate response to respiratory syncytial virus.  Nat Immunol. 2000;  1 398-401
  • 25 Haynes L M, Moore D D, Kurt-Jones E A, Finberg R W, Anderson L J, Tripp R A. Involvement of toll-like receptor 4 in innate immunity to respiratory syncytial virus.  J Virol. 2001;  75 10730-10737
  • 26 Compton T, Kurt-Jones E A, Boehme K W, Belko J, Latz E, Golenbock D T, Finberg R W. Human cytomegalovirus activates inflammatory cytokine responses via CD14 and Toll-like receptor 2.  J Virol. 2003;  77 4588-4596
  • 27 Bieback K, Lien E, Klagge I M, Avota E, Schneider-Schaulies J, Duprex W P, Wagner H, Kirschning C J, Ter M V, Schneider-Schaulies S. Hemagglutinin protein of wild-type measles virus activates toll-like receptor 2 signaling.  J Virol. 2002;  76 8729-8736
  • 28 Alexopoulou L, Holt A C, Medzhitov R, Flavell R A. Recognition of double-stranded RNA and activation of NF-kappaB by Toll-like receptor 3.  Nature. 2001;  413 732-738
  • 29 Lund J, Sato A, Akira S, Medzhitov R, Iwasaki A. Toll-like receptor 9-mediated recognition of Herpes simplex virus-2 by plasmacytoid dendritic cells.  J Exp Med. 2003;  198 513-520
  • 30 Bornstein S R, Ehrhart-Bornstein M, Guse-Behling H, Scherbaum W A. Structure and dynamics of adrenal mitochondria following stimulation with corticotropin releasing hormone.  Anat Rec. 1992;  234 255-262
  • 31 McCann S M, Kimura M, Karanth S, Yu W H, Mastronardi C A, Rettori V. The mechanism of action of cytokines to control the release of hypothalamic and pituitary hormones in infection.  Ann N Y Acad Sci. 2000;  917 4-18
  • 32 Lohrer P, Gloddek J, Nagashima A C, Korali Z, Hopfner U, Pereda M P, Arzt E, Stalla G K, Renner U. Lipopolysaccharide directly stimulates the intrapituitary interleukin-6 production by folliculostellate cells via specific receptors and the p38alpha mitogen-activated protein kinase/nuclear factor-kappaB pathway.  Endocrinology. 2000;  141 4457-4465
  • 33 Breuel K F, Kougias P, Rice P J, Wei D, de Ponti K, Wang J, Laffan J J, Li C, Kalbfleisch J, Williams D L. Anterior pituitary cells express pattern recognition receptors for fungal glucans: implications for neuroendocrine immune involvement in response to fungal infections.  Neuroimmunomodulation. 2004;  11 1-9

S. R. Bornstein, M. D., Ph. D.

Department of Endocrinology, Diabetes and Rheumatology · University of Düsseldorf

Moorenstraße 5 · 40225 Düsseldorf · Germany

Phone: +49(211)8116829, +49(211)8117810 ·

Fax: +49(211)8117860

Email: stefan.bornstein@uni-duesseldorf.de

    >