Pharmacopsychiatry 2004; 37: 171-182
DOI: 10.1055/s-2004-832675
Original Paper
© Georg Thieme Verlag KG Stuttgart · New York

Neurosteroids and σ1 Receptors, Biochemical and Behavioral Relevance

T. Maurice1
  • 1Laboratory of Cerebral Plasticity, CNRS FRE 2693, University of Montpellier II, Montpellier, France
Further Information

Publication History

Publication Date:
17 November 2004 (online)

The σ1 receptor is a 223 amino acid protein sharing no homology with other mammalian protein. It is an intracellular protein present on the endoplasmic reticulum membrane, which can translocates to other organelles and plasma membranes after activation. Activation of the σ1 receptor results in modulation of calcium mobilization from inositol trisphosphate receptor-gated intracellular pools and, at the plasma membrane, in modulation of several neurotransmitter responses. Behaviorally, σ1 receptors are involved in learning and memory, response to stress and depression, psychostimulant-induced sensitization, vulnerability to addiction and pain perception. Numerous synthetic compounds bind to σ1 receptor, playing the role of activator/agonist or blocker/antagonist, and these include benzomorphans, neuroleptics, antidepressants, cocaine, peptides related to neuropeptide Y or calcitonin gene-related peptide. It is also the case of neuro(active)steroids, i. e., circulating neuroactive steroids and neurosteroids synthesized de novo by the brain, which appear as the most important endogenous modulators of σ1 receptor. Pregnenolone and dehydroepiandrosterone act as σ1 receptor agonists and progesterone is a potent antagonist. The present paper will review the molecular and biochemical features concerning the σ1 receptor and focus on the recent studies examining the impact of the neuro(active)steroid/σ1 receptor interaction on the antidepressant activity of σ1 receptor agonists in the context of neurodegenerative diseases.

References

  • 1 Alonso G, Phan V L, Guillemain I, Saunier M, Legrand A, Anoal M, Maurice T. Immunocytochemical localization of the σ1 receptor in the adult rat central nervous system.  Neuroscience. 2000;  97 155-170
  • 2 Ault D T, Werling L L. Differential modulation of NMDA-stimulated [3H]dopamine release from rat striatum by neuropeptide Y and sigma receptor ligands.  Brain Res. 1997;  760 210-217
  • 3 Ault D T, Werling L L. Neuropeptide Y-mediated enhancement of NMDA-stimulated [3H]dopamine release from rat prefrontal cortex is reversed by sigma1 receptor antagonists.  Schizophr Res. 1998;  31 27-36
  • 4 Barbaccia M L, Concas A, Serra M, Biggio G. Stress and neurosteroids in adult and aged rats.  Exp Gerontol. 1998;  33 697-712
  • 5 Barbaccia M L, Roscetti G, Bolacchi F, Concas A, Mostallino M C, Purdy R H, Biggio G. Stress-induced increase in brain neuroactive steroids: antagonism by abecarnil.  Pharmacol Biochem Behav. 1996;  54 205-210
  • 6 Barbaccia M L, Roscetti G, Trabucchi M, Mostallino M C, Concas A, Purdy R H, Biggio G. Time-dependent changes in rat brain neuroactive steroid concentrations and GABAA receptor function after acute stress.  Neuroendocrinology. 1996;  63 166-172
  • 7 Bergeron R, de Montigny C, Debonnel G. Potentiation of neuronal NMDA response induced by dehydroepiandrosterone and its suppression by progesterone: effects mediated via sigma receptors.  J Neurosci. 1996;  16 1193-1202
  • 8 Bergeron R, de Montigny C, Debonnel G. Pregnancy reduces brain sigma receptor function.  Brit J Pharmacol. 1999;  127 1769-1776
  • 9 Bermack J E, Debonnel G. modulation of serotonergic neurotransmission by short- and long-term treatments with sigma ligands.  Brit J Pharmacol. 2001;  134 691-699
  • 10 Bouchard P, Dumont Y, Fournier A, St-Pierre S, Quirion R. Evidence for in vivo interactions between neuropeptide Y-related peptides and σ receptors in the mouse hippocampal formation.  J Neurosci. 1993;  13 3926-3931
  • 11 Bouchard P, Maurice T, St-Pierre S, Privat A, Quirion R. Neuropeptide Y and the calcitonin gene-related peptide attenuate learning impairments induced by MK-801 via a σ receptor-related mechanism.  Eur J Neurosci. 1997;  9 2142-2151
  • 12 Bouchard P, Monnet F, Bergeron R, Roman F, Junien J L, de Montigny C, Debonnel G, Quirion R. In vivo modulation of σ receptor sites by calcitonin gene-related peptide in the mouse and rat hippocampal formation: Radioligand binding and electrophysiological studies.  Eur J Neurosci. 1995;  7 1952-1962
  • 13 Bowen W D, Walker J M, de Costa B R, Wu R, Tolentino P J, Finn D, Rothman R B, Rice K C. Characterization of the enantiomers of cis-N-[2-(3,4-dichlorophenyl)ethyl]-N-methyl-2-(1-pyrrolidinyl)cyclohexylamine (BD737 and BD738): Novel compounds with high affinity, selectivity and biological efficacy at sigma receptors.  J Pharmacol Exp Ther. 1992;  262 32-40
  • 14 Brown R C, Cascio C, Papadopoulos V. Pathways of neurosteroid biosynthesis in cell lines from human brain: Regulation of dehydroepiandrosterone formation by oxidative stress and b-amyloid peptide. J.  Neurochem. 2000;  74 847-859
  • 15 Brown R C, Han Z, Cascio C, Papadopoulos V. Oxidative stress-mediated DHEA formation in Alzheimer's disease pathology.  Neurobiol Aging. 2003;  24 57-65
  • 16 Chien C C, Pasternak G W. Functional antagonism of morphine analgesia by (+)-pentazocine: evidence for an anti-opioid sigma1 system.  Eur J Pharmacol. 1993;  250 R7-8
  • 17 Chien C C, Pasternak G W. Selective antagonism of opioid analgesia by a sigma system.  J Pharmacol Exp Ther. 1994;  271 1583-1590
  • 18 Chien C C, Pasternak G W. Sigma antagonists potentiate opioid analgesia in rats.  Neurosci Lett. 1995;  190 137-139
  • 19 Contreras P C, DiMaggio D A, O'Donohue T L. An endogenous ligand for the sigma opioid binding site.  Synapse.. 1987;  1 57-61
  • 20 Contreras P C, Quirion R, O'Donohue T L. Autoradiographic distribution of phencyclidine receptors in the rat brain using [3H]1-(1-(2-thienyl)cyclohexyl)piperidine ([3H]TCP).  Neurosci Lett. 1986;  67 101-106
  • 21 Crawford K W, Bowen W D. Sigma-2 receptor agonists activate a novel apoptotic pathway and potentiate antineoplastic drugs in breast tumor cell lines.  Cancer Res. 2002;  62 313-322
  • 22 De Bruin V MS, Vieira M CM, Rocha M NM, Viana G SB. Cortisol and dehydroepiandrosterone sulfate plasma levels and their relationship to aging, cognitive function, and dementia.  Brain Cognit. 2002;  50 316-323
  • 23 DeHaven-Hudkins D L, Hildebrand L M, Fleissner L C, Ward S J. Lack of correlation between σ binding potency and inhibition of contractions in the mouse vas deferens preparation.  Eur J Pharmacol. 1991;  203 329-335
  • 24 Earley B, Burke M, Leonard B E, Gouret C J, Junien J L. Evidence for an anti-amnesic effect of JO 1784 in the rat: a potent and selective ligand for the sigma receptor.  Brain Res. 1991;  546 282-286
  • 25 Ela C, Barg J, Vogel Z, Hasin Y, Eilam Y. Sigma receptor ligands modulate contractility, Ca2+ influx and beating rate in cultured cardiac myocytes.  J Pharmacol Exp Ther. 1994;  269 1300-1309
  • 26 Fletcher E J, Church J, MacDonald J F. Haloperidol blocks voltage-activated Ca2+ channels in hippocampal neurones.  Eur J Pharmacol. 1994;  267 249-252
  • 27 Ganapathy M E, Prasad P D, Huang W, Seth P, Leibach F H, Ganapathy V. Molecular and ligand-binding characterization of the σ-receptor in the Jurkat human T lymphocyte cell line.  J Pharmacol Exp Ther. 1999;  289 251-260
  • 28 Glamsta E L, Marklund A, Hellman U, Wernstedt C, Terenius L, Nyberg F. Isolation and characterization of a hemoglobin-derived opioid peptide from the human pituitary gland.  Regul Pept. 1991;  34 169-179
  • 29 Gonzalez G M, Werling L L. Release of [3H]dopamine from guinea pig striatal slices is modulated by sigma1 receptor agonists.  Naunyn Schmiedebergs Arch Pharmacol. 1997;  356 455-461
  • 30 Gonzalez-Alvear G M, Werling L L. regulation of [3H]dopamine release from rat striatal slices by sigma ligands.  J Pharmacol Exp Ther. 1994;  271 212-219
  • 31 Gonzalez-Alvear G M, Werling L L. Sigma1 receptors in rat striatum regulate NMDA-stimulated [3H]dopamine release via a presynaptic mechanism.  Eur J Pharmacol. 1995;  294 713-719
  • 32 Gould R J, Murphy K M, Reynolds I J, Snyder S H. Antischizophrenic drugs of the diphenylbutylpiperidine type act as calcium channel antagonists.  Proc Natl Acad Sci USA. 1983;  80 5122-5125
  • 33 Graybiel A M, Besson M J, Weber E. Neuroleptic-sensitive binding sites in the nigrostriatal system: evidence for differential distribution of sigma sites in the substantia nigra, pars compacta of the cat.  J Neurosci. 1989;  9 326-338
  • 34 Gundlach A L, Largent B L, Snyder S H. Autoradiographic localization of sigma receptor binding sites in guinea pig and rat central nervous system with (+)3H-3-(3-hydroxyphenyl)-N-(1-propyl)piperidine.  J Neurosci. 1986;  6 1757-1770
  • 35 Hanner M, Moebius F F, Flandorfer A, Knaus H G, Striessnig J, Kempner E, Glossman H. Purification, molecular cloning, and expression of the mammalian sigma1-binding site.  Proc Natl Acad Sci USA. 1996;  93 8072-8077
  • 36 Hayashi T, Maurice T, Su T P. Ca2+ signaling via sigma1-receptors: Novel regulatory mechanism affecting intracellular Ca2+ concentration.  J Pharmacol Exp Ther. 2000;  293 788-798
  • 37 Hayashi T, Su T P. Regulating ankyrin dynamics: Roles of sigma-1 receptors.  Proc Natl Acad Sci USA. 2001;  98 491-496
  • 38 Hayashi T, Su T P. σ-1 Receptors (σ1 binding sites) form raft-like microdomains and target lipid droplets on the endoplasmic reticulum: roles in endoplasmic reticulum lipid compartmentalization and export.  J Pharmacol Exp Ther. 2003;  306 718-725
  • 39 Hellewell S B, Bowen W B. A sigma-like binding site in rat pheochromocytoma (PC12) cells: decreased affinity for (+)-benzomorphans and lower molecular weight suggest a different sigma receptor form from that of guinea pig brain.  Brain Res. 1990;  527 244-253
  • 40 Hellewell S B, Bruce A, Feinstein G, Orringer J, Williams W, Bowen W B. Rat liver and kidney contain high densities of σ1 and σ2 receptors: characterization by ligand binding and photoaffinity labeling.  Eur J Pharmacol. 1994;  268 9-18
  • 41 Itzhak Y, Alerhand S. Differential regulation of sigma and PCP receptors after chronic administration of haloperidol and phencyclidine in mice.  FASEB J. 1989;  3 1868-1872
  • 42 Itzhak Y, Stein I. Sigma binding sites in the brain; an emerging concept for multiple sites and their relevance for psychiatric disorders.  Life Sci. 1990;  47 1073-1081
  • 43 Jansen K L, Faull R L, Dragunow R, Leslie R A. Distribution of excitatory and inhibitory amino acid, sigma, monoamine, catecholamine, acetylcholine, opioid, neurotensin, substance P, adenosine and neuropeptide Y receptors in human motor and somatosensory cortex.  Brain Res. 1991;  566 225-238
  • 44 Jbilo O, Vidal H, Paul R, De Nys N, Bensaid M, Silve S, Carayon P, Davi D, Galiegue S, Bourrie B, Guillemot J C, Ferrara P, Loison G, Maffrand J P, Le Fur G, Casellas P. Purification and characterization of the human SR 31747A-binding protein. A nuclear membrane protein related to yeast sterol isomerase.  J Biol Chem. 1997;  272 27 107-27 115
  • 45 Jung-Testas I, Hu Z Y, Baulieu E E, Robel P. Neurosteroids: biosynthesis of pregnenolone and progesterone in primary cultures of rat glial cells.  Endocrinology. 1989;  125 2083-2091
  • 46 Jung-Testas I, Hu Z Y, Baulieu E E, Robel P. Steroid synthesis in rat brain cell cultures.  J Steroid Biochem. 1989;  34 511-519
  • 47 Kamei H, Kameyama T, Nabeshima T. (+)-SKF-10,047 and dextromethorphan ameliorate conditioned fear stress through the activation of phenytoin-regulated σ1 sites.  Eur J Pharmacol. 1996;  299 21-28
  • 48 Kamei H, Kameyama T, Nabeshima T. (+)-SKF-10,047 and dextromethorphan ameliorate conditioned fear stress via dopaminergic systems linked to phenytoin-regulated σ1 sites.  Eur J Pharmacol. 1996b ;  309 149-158
  • 49 Kamei H, Noda Y, Kameyama T, Nabeshima T. Role of (+)-SKF-10,047-sensitive sub-population of σ1 receptors in amelioration of conditioned fear stress in rats: Association with mesolimbic dopaminergic systems.  Eur J Pharmacol. 1997;  319 165-172
  • 50 Kekuda R, Prasad P D, Fei Y J, Leibach F H, Ganapathy V. Cloning and functional expression of the human type 1 sigma receptor (hSigmaR1).  Biochem Biophys Res Commun. 1996;  229 553-558
  • 51 Kitaichi K, Chabot J G, Moebius F F, Flandorfer A, Glossmann H, Quirion R. Expression of the purported sigma11) receptor in the mammalian brain and its possible relevance in deficits induced by antagonism of the NMDA receptor complex as revealed using an antisense strategy.  J Chem Neuroanat. 2000;  20 375-387
  • 52 Klein M, Cooper T B, Musacchio J M. Effects of haloperidol and reduced haloperidol on binding to sigma sites.  Eur J Pharmacol. 1994;  254 239-248
  • 53 Largent B L, Gundlach A L, Snyder S H. Pharmacological and autoradiographic discrimination of sigma and phencyclidine receptor binding sites in brain with (+)-[3H]SKF 10,047, (+)-[3H]-3-[3-hydroxyphenyl]-N-(1-propyl)piperidine and [3H]-1-[1-(2-thienyl)cyclohexyl] piperidine.  J Pharmacol Exp Ther. 1986;  238 739-748
  • 54 Liang X, Wang R Y. Biphasic modulatory action of the selective sigma receptor ligand SR31742A on N-methyl-D-aspartate-induced neuronal responses in the frontal cortex.  Brain Res. 1998;  807 208-213
  • 55 Martin W R, Eades C G, Thompson J A, Huppler R E, Gilbert P E. The effects of morphine - and nalorphine - like drugs in the nondependent and morphine-dependent chronic spinal dog.  J Pharmacol Exp Ther. 1976;  197 517-532
  • 56 Matsumoto R R, Liu Y, Lerner M, Howard E W, Brackett D J. σ Receptors: potential medications development target for anti-cocaine agents.  Eur J Pharmacol. 2003;  469 1-12
  • 57 Matsuno K, Kobayashi T, Tanaka M K, Mita S. σ1 Receptor subtype is involved in the relief of behavioral despair in the mouse forced swimming test.  Eur J Pharmacol. 1996;  312 267-271
  • 58 Matsuno K, Senda T, Matsunaga K, Mita S, Kaneto H. Similar ameliorating effects of benzomorphans and 5-HT2 antagonists on drug-induced impairment of passive avoidance response in mice: comparison with acetylcholinesterase inhibitors.  Psychopharmacology. 1993;  112 134-141
  • 59 Matsuno K, Senda T, Matsunaga K, Mita S. Ameliorating effects of sigma receptor ligands on the impairment of passive avoidance tasks in mice: involvement in the central acetylcholinergic system.  Eur J Pharmacol. 1994;  261 43-51
  • 60 Maurice T, Martin-Fardon R, Romieu P, Matsumoto R R. Selective sigma11) receptor antagonists as a new promising strategy to prevent cocaine-induced behaviors and toxicity.  Neurosci Biobehav Res. 2002;  26 499-527
  • 61 Maurice T, Phan V L, Urani A, Kamei H, Noda Y, Nabeshima T. Neuroactive neurosteroids as endogenous effector for the sigma11) receptor: Pharmacological evidences and therapeutic opportunities.  Jpn J Pharmacol. 1999;  81 125-155
  • 62 Maurice T, Privat A. SA4503, a novel cognitive enhancer with sigma11) receptor agonist properties, facilitates NMDA receptor-dependent learning in mice.  Eur J Pharmacol. 1997;  328 9-18
  • 63 Maurice T, Roman F J, Privat A. Modulation by neurosteroids of the in vivo (+)-[3H]SKF-10,047 binding to sigma1 receptors in the mouse forebrain.  J Neurosci Res. 1996;  46 734-743
  • 64 Maurice T, Roman F J, Su T P, Privat A. Beneficial effects of sigma agonists on the age-related learning impairment in senescence-accelerated mouse (SAM).  Brain Res. 1996;  733 219-230
  • 65 Maurice T, Romieu P. Involvement of the sigma1 receptor in the appetitive effects of cocaine. Pharmacopsychiatry 2004; in press
  • 66 Maurice T, Su T P, Privat A. Sigma11) receptor agonists and neurosteroids attenuate β25 - 35-amyloid peptide-induced amnesia in mice through a common mechanism.  Neuroscience. 1998;  83 413-428
  • 67 Maurice T, Urani A, Phan V L, Romieu P. The interaction between neuroactive steroids and the sigma11) receptor function: behavioral consequences and therapeutic opportunities.  Brain Res Rev. 2001;  37 116-132
  • 68 Maurice T. Beneficial effect of the sigma-1 receptor agonist PRE-084 against spatial learning deficits in aged rats.  Eur J Pharmacol. 2001;  431 223-227
  • 69 Maurice T ., Su T P, Parish D W, Nabeshima T, Privat A. PRE-084, a sigma selective PCP derivative, attenuates MK-801-induced impairment of learning in mice.  Pharmacol Biochem Behav. 1994;  49 859-869
  • 70 McCann D J, Su T P. Solubilization and characterization of haloperidol-sensitive (+)-[3H]SKF-10,047 binding sites (sigma sites) from rat liver membranes.  J Pharmacol Exp Ther. 1991;  257 547-554
  • 71 McLean S, Weber E. Autoradiographic visualization of haloperidol-sensitive sigma receptors in guinea-pig brain.  Neuroscience. 1988;  25 259-269
  • 72 Mei J, Pasternak G W. Molecular cloning and pharmacological characterization of the rat sigma1 receptor.  Biochem Pharmacol. 2001;  62 349-355
  • 73 Meyer C, Schmieding K, Falkenstein E, Wehling M. Are high-affinity progesterone binding site(s) from porcine liver microsomes members of the sigma receptor family?.  Eur J Pharmacol. 1998;  347 293-299
  • 74 Monnet F P, Blier P, Debonnel G, de Montigny C. Modulation by sigma ligands of N-methyl-D-aspartate-induced [3H]noradrenaline release in the rat hippocampus: G-protein dependency.  Naunyn Schmiedebergs Arch Pharmacol. 1992;  346 32-39
  • 75 Monnet F P, Debonnel G and de Montigny C. Neuropeptide Y selectively potentiates N-methyl-D-aspartate-induced neuronal activation.  Eur J Pharmacol. 1990;  182 207-208
  • 76 Monnet F P, Debonnel G, Fournier A and de Montigny C. Neuropeptide Y potentiates the N-methyl-D-aspartate response in the CA3 dorsal hippocampus. II. Involvement of a subtype of σ receptor.  J Pharmacol Exp Ther. 1992;  263 1219-1225
  • 77 Monnet F P, Debonnel G, Junien J L, De Montigny C. N-methyl-D-aspartate-induced neuronal activation is selectively modulated by sigma receptors.  Eur J Pharmacol. 1990;  179 441-445
  • 78 Monnet F P, Fournier A, Debonnel G and de Montigny C. Neuropeptide Y potentiates selectively the N-methyl-D-aspartate response in the rat CA3 dorsal hippocampus. I. Involvement of an atypical neuropeptide Y receptor.  J Pharmacol Exp Ther. 1992;  263 1212-1218
  • 79 Monnet F P, Mahé V, Robel P, Baulieu E E. Neurosteroids, via sigma receptors, modulate the [3H]norepinephrine release evoked by N-methyl-D-aspartate in the rat hippocampus.  Proc Natl Acad Sci USA. 1995;  92 3774-3778
  • 80 Monnet F P. Sigma receptors and intracellular signaling: Impact on synaptic plasticity. XXIII CINP Meeting Abstr 2002: S.29.3
  • 81 Morin-Surun M P, Collin T, Denavit-Saubié M, Baulieu E E, Monnet F P. Intracellular σ1 receptor modulates phospholipase C and protein kinase C activation in the brain stem.  Proc Natl Acad Sci USA. 1999;  96 8196-8199
  • 82 Musacchio J M, Klein M, Santiago L J. High affinity dextromethorphan binding sites in guinea pig brain: Further characterization and allosteric interactions.  J Pharmacol Exp Ther. 1988;  247 424-431
  • 83 Nagornaia L V, Samovilova N N, Korobov N V, Vinogradov V A. Partial purification of endogenous inhibitors of (+)-[3H] SKF 10 047 binding with sigma-opioid receptors of the liver.  Bull Eksp Biol Med. 1988;  106 314-317
  • 84 Ohno M, Watanabe S. Intrahippocampal administration of (+)-SKF-10,047, a sigma ligand, reverses MK-801-induced impairment of working memory in rats.  Brain Res. 1995;  684 237-242
  • 85 Okuyama S, Imagawa Y, Sakagawa T, Nakazato A, Yamaguchi K, Katoh M, Yamada S, Araki H, Otomo S. NE-100, a novel sigma receptor ligand: effect on phencyclidine-induced behaviors in rats, dogs and monkeys.  Life Sci. 1994;  55 PL133-138
  • 86 Pan Y X, Mei J, Xu J, Wan B L, Zuckerman A, Pasternak G W. Cloning and characterization of a mouse σ1 receptor.  J Neurochem. 1998;  70 2279-2285
  • 87 Paul I A, Basile A S, Rojas E, Youdim M BH, De Costa B, Skolnick P, Pollard H B, Kuijper S G AJ. Sigma receptors modulate nicotinic receptor function in adrenal chromaffin cells.  FASEB J. 1993;  7 1171-1178
  • 88 Phan V L, Su T P, Privat A, Maurice T. Modulation of steroidal levels by adrenalectomy/castration and inhibition of neurosteroid synthesis enzymes affect sigma11) receptor-mediated behaviour in mice.  Eur J Neurosci. 1999;  11 2385-2396
  • 89 Phan V L, Urani A, Romieu P, Maurice T. Strain differences in σ1 receptor-mediated behaviours are related to neurosteroid levels.  Eur J Neurosci. 2002;  15 1523-1534
  • 90 Phan V L, Urani A, Sandillon F, Privat A, Maurice T. Preserved sigma11) receptor expression and behavioral efficacy in the aged C57BL/6 mouse.  Neurobiol Aging. 2003;  24 865-881
  • 91 Prasad P D, Li H W, Fei Y J, Ganapathy M E, Fujita T, Plumley L H, Yang-Feng T L, Leibach F H, Ganapathy V. Exon-intron structure, analysis of promoter region, and chromosomal localization of the human type 1 sigma receptor gene.  J Neurochem. 1998;  70 443-451
  • 92 Purdy R H, Morrow A L, Moore P H, Paul S M. Stress-induced elevations of γ-aminobutyric acid type A receptor-active steroids in the rat brain.  Proc Natl Acad Sci USA. 1991;  88 4553-4557
  • 93 Quirion R, Bowen W D, Itzhak Y, Junien J L, Musacchio J M, Rothman R B, Su T P, Tam S W, Taylor D P. A proposal for the classification of sigma binding sites.  Trends Pharmacol Sci. 1992;  13 85-86
  • 94 Quirion R, Chicheportiche R, Contreras P C, Johnson K M, Lodge D, Tam S W, Woods J H, Zukin S R. Classification and nomenclature of phencyclidine and sigma receptor sites.  Trends Neurosci. 1987;  10 444-446
  • 95 Roman F, Pascaud X, Chomette G, Bueno L, Junien J L. Autoradiographic localization of sigma opioid receptors in the gastrointestinal tract of the guinea pig.  Gastroenterology. 1989;  97 76-82
  • 96 Roman F, Pascaud X, Vauche D, Junien J L. Evidence for a non-opioid sigma binding site in the guinea-pig myenteric plexus.  Life Sci. 1988;  42 2217-2222
  • 97 Roman F J, Pascaud X, Duffy O, Junien J L. N-methyl-D-aspartate receptor complex modulation by neuropeptide Y and peptide YY in rat hippocampus in vitro.  Neurosci Lett. 1991;  122 202-204
  • 98 Samovilova N N, Vinogradov V A. Subcellular distribution of (+)-[3H]SKF 10,047 binding sites in rat liver.  Eur J Pharmacol. 1992;  225 69-74
  • 99 Seth P, Fei Y J, Li H W, Huang W, Leibach F H, Ganapathy V. Cloning and functional characterization of a sigma receptor from rat brain.  J Neurochem. 1998;  70 922-931
  • 100 Seth P, Ganapathy M E, Conway S J, Bridges C D, Smith S B, Casellas P, Ganapathy V. Expression pattern of the type I sigma receptor in the brain and identity of critical amino acid residues in the ligand-binding domain of the receptor.  Biochim Biophys Acta. 2001;  1540 59-67
  • 101 Seth P, Leibach F H, Ganapathy V. Cloning and structural analysis of the cDNA and the gene encoding the murine type 1 sigma receptor.  Biochem Biophys Res Commun. 1997;  241 535-540
  • 102 Su T P, Hayashi T. Cocaine affects the dynamics of cytoskeletal proteins via sigma1 receptors.  Trends Pharmacol Sci. 2001;  22 456-458
  • 103 Su T P, Hayashi T. Understanding the molecular mechanism of sigma-1 receptors: towards a hypothesis that sigma-1 receptors are intracellular amplifiers for signal transduction.  Curr Med Chem. 2003;  10 2075-2082
  • 104 Su T P, London E D, Jaffe J H. Steroid binding at sigma receptors suggests a link between endocrine, nervous, and immune systems.  Science. 1988;  240 219-221
  • 105 Su T P, Weissman A D, Yeh S Y. Endogenous ligands for sigma opioid receptors in the brain (”sigmaphin”): evidence from binding assays.  Life Sci. 1986;  38 2199-210
  • 106 Su T P, Wu X Z. Guinea pig vas deferens contains sigma but not phencyclidine receptors.  Neurosci Lett. 1990;  108 341-345
  • 107 Su T P. Evidence for sigma opioid receptor: Binding of [3H]SKF-10 047 to etorphine-inaccessible sites in guinea-pig brain.  J Pharmacol Exp Ther. 1982;  223 284-290
  • 108 Tam S W, Cook L. Sigma opiates and certain antipsychotic drugs mutually inhibit (+)-[3H] SKF 10,047 and [3H]haloperidol binding in guinea pig brain membranes.  Proc Natl Acad Sci USA. 1984;  81 5618-5621
  • 109 Taylor D P, Dekleva J. Potential antipsychotic BMY-14,802 selectively binds to sigma sites.  Drug Dev Res. 1987;  11 65-70
  • 110 Taylor D P, Eison M S, Moon S L, Yocca F D. BMY-14,802: A potential antipsychotic with selective affinity for σ-binding sites.  Adv Neuropsychiat Psychopharmacology. 1991;  1 307-315
  • 111 Tottori K, Kikuchi T, Uwahodo Y, Yamada S, Oshiro Y, Koga N. Antidepressant effect of OPC-14 523 in the forced swimming test.  Jpn J Pharmacol. 1997;  73SI 59P
  • 112 Tottori K, Nakai M, Uwahodo Y, Miwa T, Yamada S, Oshiro Y, Kikuchi T, Altar A. Attenuation of scopolamine-induced and age-associated memory impairments by the sigma and 5-hydroxytryptamine-1A receptor agonist OPC-14 523 (1-{3[4-(3-chlorophenyl)-1-piperazinyl]propyl}-5-methoxy-3,4-dihydro-2[1H]-quinolinone monomethanesulfonate).  J Pharmacol Exp Ther. 2002;  301 249-257
  • 113 Urani A, Roman F J, Phan V L, Su T P, Maurice T. The antidepressant-like effect induced by sigma11) receptor agonists and neuroactive steroids in mice submitted to the forced swimming test.  J Pharmacol Exp Ther. 2001;  298 1269-1279
  • 114 Urani A, Romieu P, Roman F J, Maurice T. Enhanced antidepressant effect of sigma1 agonists in β25 - 35-amyloid peptide-treated mice.  Behav Brain Res. 2002;  134 239-247
  • 115 Urani A, Romieu P, Roman F J, Yamada K, Noda Y, Kamei H, Tran H M, Nagai T, Nabeshima T, Maurice T. Enhanced antidepressant efficacy of σ1 receptor agonists in rats after chronic intracerebroventricular infusion of β-amyloid-(1 - 40) protein.  Eur J Pharmacol. 2004;  486 151-161
  • 116 Van Broekhoven F, Verkes R J. Neurosteroids in depression: a review.  Psychopharmacology. 2003;  165 97-110
  • 117 Vaupel D B. Naltrexone fails to antagonize the sigma effects of PCP and SKF-10,047 in the dog.  Eur J Pharmacol. 1983;  92 269-274
  • 118 Walker J M, Bowen W D, Walker F O, Matsumoto R R, De Costa B, Rice K C. Sigma receptors: Biology and function.  Pharmacol Rev. 1990;  42 355-402
  • 119 Weill-Engerer S, David J P, Sazdovitch V, Liere P, Eychenne B, Pianos A, Schumacher M, Delacourte A, Baulieu E E, Akwa Y. Neurosteroid quantification in human brain regions: comparison between Alzheimer's and nondemented patients.  J Clin Endocrinol Metab. 2002;  87 5138-5143
  • 120 Wolfe S A, Culp S G, De Souza E B. Sigma-receptors in endocrine organs: identification, characterization, and autoradiographic localization in rat pituitary, adrenal, testis, and ovary.  Endocrinology. 1989;  124 1160-1172
  • 121 Wolfe S A, Kulsakdinun C, Battaglia G, Jaffe J H, De Souza E B. Initial identification and characterization of sigma receptors on human peripheral blood leukocytes.  J Pharmacol Exp Ther. 1988;  247 1114-1119
  • 122 Wolkowitz O M, Kramer J H, Reus V I, Costa M M, Yaffe K, Walton P, Raskind M, Peskind E, Newhouse P, Sack D, De Souza E, Sadowsky C, Roberts E. DHEA-Alzheimer's Disease Collaborative Research., 2003. DHEA treatment of Alzheimer's disease: a randomized, double-blind, placebo-controlled study.  Neurology. 2003;  60 1071-1076
  • 123 Wolkowitz O M, Reus V I, Roberts E, Manfredi F, Chan T, Raum W J, Ormiston S, Johnson R, Canick J, Brizendine L, Weingartner H. Dehydroepiandrosterone (DHEA) treatment of depression.  Biol Psychiatry. 1997;  41 311-318
  • 124 Yamada M, Nishigami T, Nakasho K, Nishimoto Y, Miyaji H. Relationship between sigma-like site and progesterone-binding site of adult male rat liver microsomes.  Hepatology. 1994;  20 1271-1280
  • 125 Yamamoto H, Miura R, Yamamoto T, Shinohara K, Watanabe M, Okuyama S, Nakazato A, Nukada T. Amino acid residues in the transmembrane domain of the type 1 sigma receptor critical for ligand binding.  FEBS Lett. 1999;  445 19-22
  • 126 Zamanillo D, Andreu F, Ovalle S, Perez M P, Romero G, Farre A J, Guitart X. Up-regulation of sigma1 receptor mRNA in rat brain by a putative atypical antipsychotic and sigma receptor ligand.  Neurosci Lett. 2000;  282 169-172
  • 127 Zhang A Z, Mitchell K N, Cook L, Tam S W. Human endogenous brain ligands for sigma and phencyclidine receptors.  In: Sigma and Phencyclidine-Like Compounds as Molecular Probes in Biology. Domino EF, Kamenka JM, eds Ann Arbor, MI; NPP Books 1988: pp 335-343
  • 128 Zou L B, Yamada K, Nabeshima T. Sigma receptor ligands (+)-SKF-10,047 and SA4503 improve dizocilpine-induced spatial memory deficits in rats.  Eur J Pharmacol. 1998;  355 1-10

Dr. T. Maurice

CNRS FRE 2693

University of Montpellier II

cc 090

place Eugène Bataillon

34095 Montpellier cedex 5

France

Phone: +33/0 4 67 14 36 23

Fax: +33/0 4 67 14 42 51

Email: maurice@univ-montp2.fr

    >