Z Gastroenterol 2018; 56(06): 583-681
DOI: 10.1055/a-0604-2924
Leitlinie
© Georg Thieme Verlag KG Stuttgart · New York

S2k-Leitlinie Neuroendokrine Tumore

AWMF-Reg. 021-27Practice guideline neuroendocrine tumorsAWMF-Reg. 021-27
Authors
,
Collaborators:
Federführende Fachgesellschaft: Deutsche Gesellschaft für Gastroenterologie, Verdauungs- und Stoffwechselkrankheiten (DGVS) Beteiligte Fachgesellschaften: Netzwerk Neuroendokrine Tumoren (NeT) e.V. (Patientenvertretung), Bundesorganisation Selbsthilfe NeuroEndokrine Tumoren e.V. (NET-sgh) (Patientenvertretung), Deutsche Gesellschaft für Hämatologie und Medizinische Onkologie e.V. (DGHO), und Arbeitsgemeinschaft Internistische Onkologie (AIO) der Deutschen Krebsgesellschaft e.V, Deutsche Gesellschaft für Allgemein- und Viszeralchirurgie e.V. (DGAV), Deutsche Gesellschaft für Chirurgie (DGCH), Deutsche Gesellschaft für Endoskopie und Bildgebende Verfahren (DGEBV), Deutsche Gesellschaft für Nuklearmedizin e.V. (DGNM), Deutsche Gesellschaft für Innere Medizin (DGIM), Deutsche Gesellschaft für Endokrinologie (DGE), Deutsche Gesellschaft für Palliativmedizin e.V. (DGP), Deutsche Röntgengesellschaft e.V. (DRG), Deutsche Gesellschaft für Pathologie e.V./Bundesverband Deutscher Pathologen (DGP/BDP), Deutsche Gesellschaft für interventionelle Radiologie (DGiR)
Further Information

Publication History

27 March 2018

06 April 2018

Publication Date:
11 June 2018 (online)

Zusammenfassung

Diese erstmals erstellte Leitlinie soll als praktische Hilfe für die Diagnostik und Therapie neuroendokriner Tumore dienen. Sie soll den aktuellen Stand der Wissenschaft darstellen, das Erkennen der Erkrankung fördern und die Behandlung der Patienten verbessern. Die Leitlinie wurde unter Federführung der DGVS und mit Beteiligung benachbarter Fachgebiete erstellt.

Abstract

This guideline was created for the first time and is intended as a practical aid for the diagnosis and therapy of neuroendocrine tumors. The aim is to represent the current state of science, promote the recognition of the disease and improve the treatment of patients. The guideline was created under the leadership of the DGVS and with participation of neighbouring scientific societies.

* Geteilte Erstautorenschaft, beide Autoren haben gleichwertig beigetragen.


** Geteilte Letztautorenschaft, beide Autoren haben gleichwertig beigetragen.


 
  • Literatur

  • 1 Perren A. et al. ENETS Consensus Guidelines for the Standards of Care in Neuroendocrine Tumors: Pathology: Diagnosis and Prognostic Stratification. Neuroendocrinology 2017; 105: 196-200
  • 2 Kloppel G. et al. The ENETS and AJCC/UICC TNM classifications of the neuroendocrine tumors of the gastrointestinal tract and the pancreas: a statement. Virchows Arch 2010; 456: 595-597
  • 3 Bosman FT. Cancer, T.I.A.f.R.o.. et al. WHO Classification of Tumours of the Digestive System. Geneva: World Health Organization; 2010 4 ed.
  • 4 Dhall D. et al. Ki-67 proliferative index predicts progression-free survival of patients with well-differenziated ileal neuroendocrine tumors. Hum Pathol 2012; 43: 489-495
  • 5 Khan MS. et al. A comparison of Ki-67 and mitotic count as prognostic markers for metastatic pancreatic and midgut neuroendocrine neoplasms. Br J Cancer 2013; 108: 1838-1845
  • 6 Weynand B. et al. Pancreatic neuroendocrine tumour grading on endoscopic ultrasound-guided fine needle aspiration: high reproducibility and inter-observer agreement of the Ki-67 labelling index. Cytopathology 2014; 25: 389-395
  • 7 Hasegawa T. et al. Evaluation of Ki-67 index in EUS-FNA specimens for the assessment of malignancy risk in pancreatic neuroendocrine tumors. Endoscopy 2014; 46: 32-38
  • 8 Volante M. et al. Somatostatin receptor type 2A immunohistochemistry in neuroendocrine tumors: a proposal of scoring system correlated with somatostatin receptor scintigraphy. Mod Pathol 2007; 20: 1172-1182
  • 9 Korner M. et al. Somatostatin receptor subtype 2A immunohistochemistry using a new monoclonal antibody selects tumors suitable for in vivo somatostatin receptor targeting. Am J Surg Pathol 2012; 36: 242-252
  • 10 Anlauf M. et al. Primary lymph node gastrinoma or occult duodenal microgastrinoma with lymph node metastases in a MEN1 patient: the need for a systematic search for the primary tumor. Am J Surg Pathol 2008; 32: 1101-1105
  • 11 Anlauf M. et al. Sporadic versus hereditary gastrinomas of the duodenum and pancreas: distinct clinico-pathological and epidemiological features. World J Gastroenterol 2006; 12: 5440-5446
  • 12 Anlauf M. et al. Precursor lesions in patients with multiple endocrine neoplasia type 1-associated duodenal gastrinomas. Gastroenterology 2005; 128: 1187-1198
  • 13 Anlauf M. et al. Microadenomatosis of the endocrine pancreas in patients with and without the multiple endocrine neoplasia type 1 syndrome. Am J Surg Pathol 2006; 30: 560-574
  • 14 Henopp T. et al. Glucagon cell adenomatosis: a newly recognized disease of the endocrine pancreas. J Clin Endocrinol Metab 2009; 94: 213-217
  • 15 Kloppel G. et al. Hyperplasia to neoplasia sequence of duodenal and pancreatic neuroendocrine diseases and pseudohyperplasia of the PP-cells in the pancreas. Endocr Pathol 2014; 25: 181-185
  • 16 Sipos B. et al. Glucagon cell hyperplasia and neoplasia with and without glucagon receptor mutations. J Clin Endocrinol Metab 2015; 100: E783-E788
  • 17 Anlauf M. et al. Insulinomatosis: a multicentric insulinoma disease that frequently causes early recurrent hyperinsulinemic hypoglycemia. Am J Surg Pathol 2009; 33: 339-346
  • 18 Anlauf M, Perren A, Kloppel G. Endocrine precursor lesions and microadenomas of the duodenum and pancreas with and without MEN1: criteria, molecular concepts and clinical significance. Pathobiology 2007; 74: 279-284
  • 19 Anlauf M. et al. Persistent hyperinsulinemic hypoglycemia in 15 adults with diffuse nesidioblastosis: diagnostic criteria, incidence, and characterization of beta-cell changes. Am J Surg Pathol 2005; 29: 524-533
  • 20 Chiloiro S. et al. Pancreatic neuroendocrine tumors in MEN1 disease: a mono-centric longitudinal and prognostic study. Endocrine 2018; 60: 362-367
  • 21 Schmitt AM. et al. Islet 1 (Isl1) expression is a reliable marker for pancreatic endocrine tumors and their metastases. Am J Surg Pathol 2008; 32: 420-425
  • 22 Oberg K. et al. ENETS Consensus Guidelines for Standard of Care in Neuroendocrine Tumours: Biochemical Markers. Neuroendocrinology 2017; 105: 201-211
  • 23 Nobels FR. et al. Chromogranin A as serum marker for neuroendocrine neoplasia: comparison with neuron-specific enolase and the alpha-subunit of glycoprotein hormones. The Journal of Clinical Endocrinology and Metabolism 1997; 82: 2622-2628
  • 24 Taupenot L, Harper KL, O’Connor DT. The chromogranin-secretogranin family. The New England Journal of Medicine 2003; 348: 1134-1149
  • 25 Sobol RE, Memoli V, Deftos LJ. Hormone-Negative, Chromogranin a-Positive Endocrine Tumors. New England Journal of Medicine 1989; 320: 444-447
  • 26 Stridsberg M, Husebye ES. Chromogranin A and chromogranin B are sensitive circulating markers for phaeochromocytoma. European Journal of Endocrinology 1997; 136: 67-73
  • 27 Janson ET. et al. Nordic guidelines 2014 for diagnosis and treatment of gastroenteropancreatic neuroendocrine neoplasms. Acta Oncol 2014; 53: 1284-1297
  • 28 Ardill JES, O’Dorisio TM. Circulating biomarkers in neuroendocrine tumors of the enteropancreatic tract: application to diagnosis, monitoring disease, and as prognostic indicators. Endocrinology and Metabolism Clinics of North America 2010; 39: 777-790
  • 29 Gut P. et al. Chromogranin A – unspecific neuroendocrine marker. Clinical utility and potenzial diagnostic pitfalls. Arch Med Sci 2016; 12: 1-9
  • 30 Janson ET. et al. Carcinoid tumors: analysis of prognostic factors and survival in 301 patients from a referral center. Ann Oncol 1997; 8: 685-690
  • 31 Baudin E. et al. Neuron-specific enolase and chromogranin A as markers of neuroendocrine tumours. British Journal of Cancer 1998; 78: 1102-1107
  • 32 Sorbye H. et al. Predictive and prognostic factors for treatment and survival in 305 patients with advanced gastrointestinal neuroendocrine carcinoma (WHO G3): the NORDIC NEC study. Ann Oncol 2013; 24: 152-160
  • 33 Korse CM. et al. Choice of tumour markers in patients with neuroendocrine tumours is dependent on the histological grade. A marker study of Chromogranin A, Neuron specific enolase, Progastrin-releasing peptide and cytokeratin fragments. European Journal of Cancer (Oxford, England: 1990) 2012; 48: 662-671
  • 34 O’Connor DT, Deftos LJ. Secretion of chromogranin A by peptide-producing endocrine neoplasms. The New England Journal of Medicine 1986; 314: 1145-1151
  • 35 Modlin IM. et al. Chromogranin A--biological function and clinical utility in neuro endocrine tumor disease. Ann Surg Oncol 2010; 17: 2427-2443
  • 36 Campana D. et al. Chromogranin A: is it a useful marker of neuroendocrine tumors?. J Clin Oncol 2007; 25: 1967-1973
  • 37 Zatelli MC. et al. Chromogranin A as a marker of neuroendocrine neoplasia: an Italian Multicenter Study. Endocr Relat Cancer 2007; 14: 473-482
  • 38 Ardill JE, Erikkson B. The importance of the measurement of circulating markers in patients with neuroendocrine tumours of the pancreas and gut. Endocr Relat Cancer 2003; 10: 459-462
  • 39 Niederle B. et al. ENETS Consensus Guidelines Update for Neuroendocrine Neoplasms of the Jejunum and Ileum. Neuroendocrinology 2016; 103: 125-138
  • 40 Falconi M. et al. Well-differenziated pancreatic nonfunctioning tumors/carcinoma. Neuroendocrinology 2006; 84: 196-211
  • 41 Eriksson B. et al. Neuroendrocine pancreatic tumours: clinical presentation, biochemical and histopathological findings in 84 patients. Journal of Internal Medicine 1990; 228: 103-113
  • 42 Gkolfinopoulos S. et al. Chromogranin A as a valid marker in oncology: Clinical application or false hopes?. World J Methodol 2017; 7: 9-15
  • 43 Nehar D. et al. Interest of Chromogranin A for diagnosis and follow-up of endocrine tumours. Clin Endocrinol (Oxf) 2004; 60: 644-652
  • 44 Pirker RA. et al. Usefulness of chromogranin A as a marker for detection of relapses of carcinoid tumours. Clin Chem Lab Med 1998; 36: 837-840
  • 45 Arnold R. et al. Plasma chromogranin A as marker for survival in patients with metastatic endocrine gastroenteropancreatic tumors. Clin Gastroenterol Hepatol 2008; 6: 820-827
  • 46 Welin S. et al. Elevated plasma chromogranin A is the first indication of recurrence in radically operated midgut carcinoid tumors. Neuroendocrinology 2009; 89: 302-307
  • 47 Massironi S. et al. Plasma chromogranin A response to octreotide test: prognostic value for clinical outcome in endocrine digestive tumors. Am J Gastroenterol 2010; 105: 2072-2078
  • 48 Jensen KH. et al. Chromogranin A is a sensitive marker of progression or regression in ileo-cecal neuroendocrine tumors. Scand J Gastroenterol 2013; 48: 70-77
  • 49 Yao JC. et al. Chromogranin A and neuron-specific enolase as prognostic markers in patients with advanced pNET treated with everolimus. The Journal of Clinical Endocrinology and Metabolism 2011; 96: 3741-3749
  • 50 Giovanella L. et al. Chromogranin-A as a serum marker for neuroendocrine tumors: comparison with neuron-specific enolase and correlation with immunohistochemical findings. The International Journal of Biological Markers 1999; 14: 160-166
  • 51 Ter-Minassian M. et al. Clinical presentation, recurrence, and survival in patients with neuroendocrine tumors: results from a prospective institutional database. Endocr Relat Cancer 2013; 20: 187-196
  • 52 Shen C. et al. Clinical, pathological and demographic factors associated with development of recurrences after surgical resection in elderly patients with neuroendocrine tumors. Ann Oncol 2017; 28: 1582-1589
  • 53 Eriksson B. et al. A polyclonal antiserum against chromogranin A and B--a new sensitive marker for neuroendocrine tumours. Acta Endocrinologica 1990; 122: 145-155
  • 54 O’Toole D. et al. ENETS Consensus Guidelines for the Standards of Care in Neuroendocrine Tumors: biochemical markers. Neuroendocrinology 2009; 90: 194-202
  • 55 Stridsberg M. et al. A comparison between three commercial kits for chromogranin A measurements. The Journal of Endocrinology 2003; 177: 337-341
  • 56 Leon A. et al. Comparison between two methods in the determination of circulating chromogranin A in neuroendocrine tumors (NETs): results of a prospective multicenter observational study. The International Journal of Biological Markers 2005; 20: 156-168
  • 57 Verderio P. et al. An Italian program of External Quality Control for chromogranin A (CgA) assay: performance evaluation of CgA determination. Clinical Chemistry and Laboratory Medicine 2007; 45: 1244-1250
  • 58 Stridsberg M. et al. Measurements of chromogranin A, chromogranin B (secretogranin I), chromogranin C (secretogranin II) and pancreastatin in plasma and urine from patients with carcinoid tumours and endocrine pancreatic tumours. The Journal of Endocrinology 1995; 144: 49-59
  • 59 Giusti M. et al. Effect of short-term treatment with low dosages of the proton-pump inhibitor omeprazole on serum chromogranin A levels in man. Eur J Endocrinol 2004; 150: 299-303
  • 60 Spadaro A. et al. Serum chromogranin-A in hepatocellular carcinoma: diagnostic utility and limits. World J Gastroenterol 2005; 11: 1987-1990
  • 61 Sciola V. et al. Plasma chromogranin a in patients with inflammatory bowel disease. Inflamm Bowel Dis 2009; 15: 867-871
  • 62 Massironi S. et al. Chromogranin A levels in chronic liver disease and hepatocellular carcinoma. Dig Liver Dis 2009; 41: 31-35
  • 63 Pregun I. et al. Effect of proton-pump inhibitor therapy on serum chromogranin a level. Digestion 2011; 84: 22-28
  • 64 O’Connor DT. et al. Rapid radioimmunoassay of circulating chromogranin A: in vitro stability, exploration of the neuroendocrine character of neoplasia, and assessment of the effects of organ failure. Clinical Chemistry 1989; 35: 1631-1637
  • 65 Hsiao RJ, Mezger MS, O’Connor DT. Chromogranin A in uremia: Progressive retention of immunoreactive fragments. Kidney International 1990; 37: 955-964
  • 66 Sanduleanu S. et al. Serum chromogranin A as a screening test for gastric enterochromaffin-like cell hyperplasia during acid-suppressive therapy. European Journal of Clinical Investigation 2001; 31: 802-811
  • 67 Sanduleanu S. et al. Serum gastrin and chromogranin A during medium- and long-term acid suppressive therapy: a case-control study. Aliment Pharmacol Ther 1999; 13: 145-153
  • 68 Feldman JM, O’Dorisio TM. Role of neuropeptides and serotonin in the diagnosis of carcinoid tumors. Am J Med 1986; 81: 41-48
  • 69 Phan AT. et al. Effect of lanreotide depot (LAN) on 5-hydroxyindoleacetic acid (5HIAA) and chromogranin A (CgA) in gastroenteropancreatic neuroendocrine (GEP NET) tumors: Correlation with tumor response and progression-free survival (PFS) from the phase III CLARINET study. Journal of Clinical Oncology 2017; 35 (Suppl. 15) 4095-4095
  • 70 Meijer WG. et al. Discriminating capacity of indole markers in the diagnosis of carcinoid tumors. Clin Chem 2000; 46: 1588-1596
  • 71 Turner GB. et al. Circulating markers of prognosis and response to treatment in patients with midgut carcinoid tumours. Gut 2006; 55: 1586-1591
  • 72 van der Horst-Schrivers ANA. et al. Persistent low urinary excretion of 5-HIAA is a marker for favourable survival during follow-up in patients with disseminated midgut carcinoid tumours. European Journal of Cancer (Oxford, England: 1990) 2007; 43: 2651-2657
  • 73 Zandee WT. et al. Limited value for urinary 5-HIAA excretion as prognostic marker in gastrointestinal neuroendocrine tumours. European Journal of Endocrinology 2016; 175: 361-366
  • 74 Formica V. et al. The prognostic role of WHO classification, urinary 5-hydroxyindoleacetic acid and liver function tests in metastatic neuroendocrine carcinomas of the gastroenteropancreatic tract. British Journal of Cancer 2007; 96: 1178-1182
  • 75 Kissinger PT. et al. Electrochemical detection of selected organic components in the eluate from high-performance liquid-chromatography. Clinical Chemistry 1974; 20: 992-997
  • 76 Mailman RB, Kilts CD. Analytical considerations for quantitative determination of serotonin and its metabolically related products in biological matrices. Clinical Chemistry 1985; 31: 1849-1854
  • 77 Kema IP. et al. Influence of a serotonin- and dopamine-rich diet on platelet serotonin content and urinary excretion of biogenic amines and their metabolites. Clinical Chemistry 1992; 38: 1730-1736
  • 78 Kema IP. et al. Profiling of tryptophan-related plasma indoles in patients with carcinoid tumors by automated, on-line, solid-phase extraction and HPLC with fluorescence detection. Clinical Chemistry 2001; 47: 1811-1820
  • 79 Kema IP, de Vries EGE, Muskiet FAJ. Clinical chemistry of serotonin and metabolites. Journal of Chromatography B: Biomedical Sciences and Applications 2000; 747: 33-48
  • 80 Kroll CA. et al. Liquid Chromatographic–Tandem Mass Spectrometric Method for the Determination of 5-Hydroxyindole-3-acetic Acid in Urine. Clinical Chemistry 2002; 48: 2049-2051
  • 81 Cleare AJ. et al. A case of coeliac disease detected via raised 5-hydroxytryptamine and 5-hydroxyindoleacetic acid. Annals of Clinical Biochemistry 1997; 34: 440-441
  • 82 Nuttall KL, Pingree SS. The incidence of elevations in urine 5-hydroxyindoleacetic acid. Annals of Clinical and Laboratory Science 1998; 28: 167-174
  • 83 Mashige F. et al. Acidic catecholamine metabolites and 5-hydroxyindoleacetic acid in urine: the influence of diet. Annals of Clinical Biochemistry 1996; 33: 43-49
  • 84 Zuetenhorst JM. et al. Daily cyclic changes in the urinary excretion of 5-hydroxyindoleacetic acid in patients with carcinoid tumors. Clin Chem 2004; 50: 1634-1639
  • 85 Gedde-Dahl M. et al. Comparison of 24-h and overnight samples of urinary 5-hydroxyindoleacetic acid in patients with intestinal neuroendocrine tumors. Endocr Connect 2013; 2: 50-54
  • 86 Adaway JE. et al. Serum and plasma 5-hydroxyindoleacetic acid as an alternative to 24-h urine 5-hydroxyindoleacetic acid measurement. Annals of Clinical Biochemistry 2016; 53: 554-560
  • 87 Tohmola N. et al. Analytical and preanalytical validation of a new mass spectrometric serum 5-hydroxyindoleacetic acid assay as neuroendocrine tumor marker. Clinica Chimica Acta International Journal of Clinical Chemistry 2014; 428: 38-43
  • 88 Tellez MR. et al. A single fasting plasma 5-HIAA value correlates with 24-hour urinary 5-HIAA values and other biomarkers in midgut neuroendocrine tumors (NETs). Pancreas 2013; 42: 405-410
  • 89 Bajetta E. et al. Chromogranin A, neuron specific enolase, carcinoembryonic antigen, and hydroxyindole acetic acid evaluation in patients with neuroendocrine tumors. Cancer 1999; 86: 858-865
  • 90 Garcia-Carbonero R. et al. ENETS Consensus Guidelines for High-Grade Gastroenteropancreatic Neuroendocrine Tumors and Neuroendocrine Carcinomas. Neuroendocrinology 2016; 103: 186-194
  • 91 Pape UF. et al. ENETS Consensus Guidelines for the management of patients with neuroendocrine neoplasms from the jejuno-ileum and the appendix including goblet cell carcinomas. Neuroendocrinology 2012; 95: 135-156
  • 92 Ahlman H. et al. Poorly-differenziated endocrine carcinomas of midgut and hindgut origin. Neuroendocrinology 2008; 87: 40-46
  • 93 Davar J. et al. Diagnosing and Managing Carcinoid Heart Disease in Patients With Neuroendocrine Tumors: An Expert Statement. J Am Coll Cardiol 2017; 69: 1288-1304
  • 94 Bhattacharyya S. et al. Usefulness of N-terminal pro-brain natriuretic peptide as a biomarker of the presence of carcinoid heart disease. The American Journal of Cardiology 2008; 102: 938-942
  • 95 Jensen RT. et al. ENETS Consensus Guidelines for the management of patients with digestive neuroendocrine neoplasms: functional pancreatic endocrine tumor syndromes. Neuroendocrinology 2012; 95: 98-119
  • 96 Virgone C. et al. Appendiceal neuroendocrine tumours in childhood: Italian TREP project. J Pediatr Gastroenterol Nutr 2014; 58: 333-338
  • 97 Plockinger U. et al. Consensus guidelines for the management of patients with digestive neuroendocrine tumours: well-differenziated tumour/carcinoma of the appendix and goblet cell carcinoma. Neuroendocrinology 2008; 87: 20-30
  • 98 Delle FaveG. et al. ENETS Consensus Guidelines for the management of patients with gastroduodenal neoplasms. Neuroendocrinology 2012; 95: 74-87
  • 99 Caplin M. et al. ENETS Consensus Guidelines for the management of patients with digestive neuroendocrine neoplasms: colorectal neuroendocrine neoplasms. Neuroendocrinology 2012; 95: 88-97
  • 100 Naalla R. et al. Duodenal carcinoid with carcinoid syndrome. BMJ Case Rep 2014; 1-3 doi:10.1136/bcr-2013-202159
  • 101 Zavras N. et al. Carcinoid syndrome from a carcinoid tumor of the pancreas without liver metastases: A case report and literature review. Oncol Lett 2017; 13: 2373-2376
  • 102 Roth J, Raschka C, Hammar CH. [Pronounced flush symptoms in carcinoid syndrome without liver metastases]. Leber Magen Darm 1994; 24: 259-261
  • 103 Sonnet S, Wiesner W. Flush symptoms caused by a mesenteric carcinoid without liver metastases. Jbr-btr 2002; 85: 254-256
  • 104 Feldman JM, Jones RS. Carcinoid syndrome from gastrointestinal carcinoids without liver metastasis. Ann Surg 1982; 196: 33-37
  • 105 Falconi M. et al. ENETS Consensus Guidelines Update for the Management of Patients with Functional Pancreatic Neuroendocrine Tumors and Non-Functional Pancreatic Neuroendocrine Tumors. Neuroendocrinology 2016; 103: 153-171
  • 106 Berna MJ. et al. Serum Gastrin in Zollinger-ellison Syndrome: I. Prospective Study of Fasting Serum Gastrin in 309 Patients From the National Institutes of Health and Comparison With 2229 Cases From the Literature. Medicine 2006; 85: 295-330
  • 107 Frucht H. et al. Secretin and calcium provocative tests in the Zollinger-Ellison syndrome. A prospective study. Annals of Internal Medicine 1989; 111: 713-722
  • 108 Berna MJ. et al. Serum gastrin in Zollinger-Ellison syndrome: II. Prospective study of gastrin provocative testing in 293 patients from the National Institutes of Health and comparison with 537 cases from the literature. evaluation of diagnostic criteria, proposal of new criteria, and correlations with clinical and tumoral features. Medicine (Baltimore) 2006; 85: 331-364
  • 109 Shah P. et al. Hypochlorhydria and achlorhydria are associated with false-positive secretin stimulation testing for Zollinger-Ellison syndrome. Pancreas 2013; 42: 932-936
  • 110 Rehfeld JF. et al. The Zollinger-Ellison syndrome and mismeasurement of gastrin. Gastroenterology 2011; 140: 1444-1453
  • 111 Poitras P, Gingras MH, Rehfeld JF. The Zollinger-Ellison syndrome: dangers and consequences of interrupting antisecretory treatment. Clin Gastroenterol Hepatol 2012; 10: 199-202
  • 112 Fendrich V. et al. Management of sporadic and multiple endocrine neoplasia type 1 gastrinomas. Br J Surg 2007; 94: 1331-1341
  • 113 Gibril F. et al. Multiple endocrine neoplasia type 1 and Zollinger-Ellison syndrome: a prospective study of 107 cases and comparison with 1009 cases from the literature. Medicine (Baltimore) 2004; 83: 43-83
  • 114 Thakker RV. et al. Clinical practice guidelines for multiple endocrine neoplasia type 1 (MEN1). J Clin Endocrinol Metab 2012; 97: 2990-3011
  • 115 Service FJ. Hypoglycemic disorders. The New England Journal of Medicine 1995; 332: 1144-1152
  • 116 Cryer PE. et al. Evaluation and management of adult hypoglycemic disorders: an Endocrine Society Clinical Practice Guideline. J Clin Endocrinol Metab 2009; 94: 709-728
  • 117 Hirshberg B. et al. Repaglinide-induced factitious hypoglycemia. The Journal of Clinical Endocrinology and Metabolism 2001; 86: 475-477
  • 118 de Herder WW. et al. Well-differenziated pancreatic tumor/carcinoma: insulinoma. Neuroendocrinology 2006; 84: 183-188
  • 119 Cryer PE. et al. Diagnostic accuracy of an “amended” insulin-glucose ratio for the biochemical diagnosis of insulinomas. Ann Intern Med 2013; 158: 500-501
  • 120 Guettier JM. et al. The role of proinsulin and insulin in the diagnosis of insulinoma: a critical evaluation of the Endocrine Society clinical practice guideline. J Clin Endocrinol Metab 2013; 98: 4752-4758
  • 121 Okabayashi T. et al. Diagnosis and management of insulinoma. World J Gastroenterol 2013; 19: 829-837
  • 122 Nauck MA, Meier JJ. Diagnostic accuracy of an “amended” insulin-glucose ratio for the biochemical diagnosis of insulinomas. Ann Intern Med 2012; 157: 767-775
  • 123 Buffet A. et al. Increased plasma beta-hydroxybutyrate levels during the fasting test in patients with endogenous hyperinsulinaemic hypoglycaemia. Eur J Endocrinol 2013; 169: 91-97
  • 124 Agin A. et al. Fast test: clinical practice and interpretation. Ann Endocrinol (Paris) 2013; 74: 174-184
  • 125 De Leon DD, Stanley CA. Determination of insulin for the diagnosis of hyperinsulinemic hypoglycemia. Best Pract Res Clin Endocrinol Metab 2013; 27: 763-769
  • 126 Toaiari M. et al. Presentation, diagnostic features and glucose handling in a monocentric series of insulinomas. J Endocrinol Invest 2013; 36: 753-758
  • 127 Iida K. et al. Glucose-responsive insulinoma in a patient with postprandial hypoglycemia in the morning. Intern Med 2010; 49: 2123-2127
  • 128 Qiao XW. et al. Chromogranin A is a reliable serum diagnostic biomarker for pancreatic neuroendocrine tumors but not for insulinomas. BMC Endocr Disord 2014; 14: 64
  • 129 Rindi G. et al. Three subtypes of gastric argyrophil carcinoid and the gastric neuroendocrine carcinoma: a clinicopathologic study. Gastroenterology 1993; 104: 994-1006
  • 130 Merola E. et al. Type I gastric carcinoids: a prospective study on endoscopic management and recurrence rate. Neuroendocrinology 2012; 95: 207-213
  • 131 Sato Y. et al. Management of gastric and duodenal neuroendocrine tumors. World J Gastroenterol 2016; 22: 6817-6828
  • 132 Burke AP. et al. Carcinoid tumors of the duodenum. A clinicopathologic study of 99 cases. Arch Pathol Lab Med 1990; 114: 700-704
  • 133 Hoffmann KM, Furukawa M, Jensen RT. Duodenal neuroendocrine tumors: Classification, functional syndromes, diagnosis and medical treatment. Best Pract Res Clin Gastroenterol 2005; 19: 675-697
  • 134 Mao C. et al. Von Recklinghausen’s disease associated with duodenal somatostatinoma: contrast of duodenal versus pancreatic somatostatinomas. J Surg Oncol 1995; 59: 67-73
  • 135 Delle Fave G. et al. ENETS Consensus Guidelines Update for Gastroduodenal Neuroendocrine Neoplasms. Neuroendocrinology 2016; 103: 119-124
  • 136 Lodish MB, Stratakis CA. Endocrine tumours in neurofibromatosis type 1, tuberous sclerosis and related syndromes. Best Pract Res Clin Endocrinol Metab 2010; 24: 439-449
  • 137 Burke AP. et al. Somatostatin-producing duodenal carcinoids in patients with von Recklinghausen’s neurofibromatosis. A predilection for black patients. Cancer 1990; 65: 1591-1595
  • 138 Witzigmann H. et al. Neuroendocrine tumours of the duodenum. Clinical aspects, pathomorphology and therapy. Langenbecks Arch Surg 2002; 386: 525-533
  • 139 Walter T. et al. Is the combination of chromogranin A and pancreatic polypeptide serum determinations of interest in the diagnosis and follow-up of gastro-entero-pancreatic neuroendocrine tumours?. Eur J Cancer 2012; 48: 1766-1773
  • 140 Panzuto F. et al. Utility of combined use of plasma levels of chromogranin A and pancreatic polypeptide in the diagnosis of gastrointestinal and pancreatic endocrine tumors. J Endocrinol Invest 2004; 27: 6-11
  • 141 Falconi M. et al. ENETS Consensus Guidelines for the management of patients with digestive neuroendocrine neoplasms of the digestive system: well-differenziated pancreatic non-functioning tumors. Neuroendocrinology 2012; 95: 120-134
  • 142 O’Toole D. et al. Rare functioning pancreatic endocrine tumors. Neuroendocrinology 2006; 84: 189-195
  • 143 Jensen RT. et al. Inherited pancreatic endocrine tumor syndromes: advances in molecular pathogenesis, diagnosis, management, and controversies. Cancer 2008; 113 (Suppl. 07) 1807-1843
  • 144 Sakurai A. et al. Clinical features of insulinoma in patients with multiple endocrine neoplasia type 1: analysis of the database of the MEN Consortium of Japan. Endocr J 2012; 59: 859-866
  • 145 Poeppel TD. et al. 68Ga-DOTATOC versus 68Ga-DOTATATE PET/CT in functional imaging of neuroendocrine tumors. Journal of Nuclear Medicine: Official Publication, Society of Nuclear Medicine 2011; 52: 1864-1870
  • 146 Kabasakal L. et al. Comparison of (6)(8)Ga-DOTATATE and (6)(8)Ga-DOTANOC PET/CT imaging in the same patient group with neuroendocrine tumours. Eur J Nucl Med Mol Imaging 2012; 39: 1271-1277
  • 147 Sadowski SM. et al. Prospective Study of 68Ga-DOTATATE Positron Emission Tomography/Computed Tomography for Detecting Gastro-Entero-Pancreatic Neuroendocrine Tumors and Unknown Primary Sites. J Clin Oncol 2015; 34: 588-596
  • 148 Schmid-Tannwald C. et al. Comparison of abdominal MRI with diffusion-weighted imaging to 68Ga-DOTATATE PET/CT in detection of neuroendocrine tumors of the pancreas. European Journal of Nuclear Medicine and Molecular Imaging 2013; 40: 897-907
  • 149 Sainz-Esteban A. et al. Contribution of ¹¹¹In-pentetreotide SPECT/CT imaging to conventional somatostatin receptor scintigraphy in the detection of neuroendocrine tumours. Nuclear Medicine Communications 2015; 36: 251-259
  • 150 Nockel P. et al. Localization of Insulinoma Using 68Ga-DOTATATE PET/CT Scan. J Clin Endocrinol Metab 2017; 102: 195-199
  • 151 Prasad V. et al. Role of (68)Ga somatostatin receptor PET/CT in the detection of endogenous hyperinsulinaemic focus: an explorative study. Eur J Nucl Med Mol Imaging 2016; 43: 1593-1600
  • 152 Luo Y. et al. Glucagon-Like Peptide-1 Receptor PET/CT with 68Ga-NOTA-Exendin-4 for Detecting Localized Insulinoma: A Prospective Cohort Study. Journal of Nuclear Medicine: Official Publication, Society of Nuclear Medicine 2016; 57: 715-720
  • 153 Partelli S. et al. The role of combined Ga-DOTANOC and (18)FDG PET/CT in the management of patients with pancreatic neuroendocrine tumors. Neuroendocrinology 2014; 100: 293-299
  • 154 Olsen IH. et al. 68Ga-DOTATOC PET and gene expression profile in patients with neuroendocrine carcinomas: strong correlation between PET tracer uptake and gene expression of somatostatin receptor subtype 2. American. Journal of Nuclear Medicine and Molecular Imaging 2016; 6: 59-72
  • 155 Kayani I. et al. A comparison of 68Ga-DOTATATE and 18F-FDG PET/CT in pulmonary neuroendocrine tumors. Journal of Nuclear Medicine: Official Publication, Society of Nuclear Medicine 2009; 50: 1927-1932
  • 156 Kouba E, Cheng L. Neuroendocrine Tumors of the Urinary Bladder According to the 2016 World Health Organization Classification: Molecular and Clinical Characteristics. Endocr Pathol 2016; 27: 188-199
  • 157 Binderup T. et al. Functional imaging of neuroendocrine tumors: a head-to-head comparison of somatostatin receptor scintigraphy, 123I-MIBG scintigraphy, and 18F-FDG PET. Journal of Nuclear Medicine: Official Publication, Society of Nuclear Medicine 2010; 51: 704-712
  • 158 Ezziddin S. et al. Factors predicting tracer uptake in somatostatin receptor and MIBG scintigraphy of metastatic gastroenteropancreatic neuroendocrine tumors. J Nucl Med 2006; 47: 223-233
  • 159 Sundin A. et al. ENETS Consensus Guidelines for the Standards of Care in Neuroendocrine Tumors: Radiological, Nuclear Medicine and Hybrid Imaging. Neuroendocrinology 2017; 105: 212-244
  • 160 Sahani DV. et al. Gastroenteropancreatic neuroendocrine tumors: role of imaging in diagnosis and management. Radiology 2013; 266: 38-61
  • 161 Ruf J. et al. 68Ga-DOTATOC PET/CT of neuroendocrine tumors: spotlight on the CT phases of a triple-phase protocol. J Nucl Med 2011; 52: 697-704
  • 162 Flechsig P. et al. Qualitative and quantitative image analysis of CT and MR imaging in patients with neuroendocrine liver metastases in comparison to (68)Ga-DOTATOC PET. Eur J Radiol 2015; 84: 1593-1600
  • 163 Schreiter NF. et al. Evaluation of the potenzial of PET-MRI fusion for detection of liver metastases in patients with neuroendocrine tumours. Eur Radiol 2012; 22: 458-467
  • 164 Juergens KU. et al. Tumor staging using whole-body high-resolution 16-channel PET-CT: does additional low-dose chest CT in inspiration improve the detection of solitary pulmonary nodules?. Eur Radiol 2006; 16: 1131-1137
  • 165 Runge VM. Critical Questions Regarding Gadolinium Deposition in the Brain and Body After Injections of the Gadolinium-Based Contrast Agents, Safety, and Clinical Recommendations in Consideration of the EMA’s Pharmacovigilance and Risk Assessment Committee Recommendation for Suspension of the Marketing Authorizations for 4 Linear Agents. Invest Radiol 2017; 52: 317-323
  • 166 Zech CJ. et al. Randomized multicentre trial of gadoxetic acid-enhanced MRI versus conventional MRI or CT in the staging of colorectal cancer liver metastases. Br J Surg 2014; 101: 613-621
  • 167 Lowenthal D. et al. Detection and characterisation of focal liver lesions in colorectal carcinoma patients: comparison of diffusion-weighted and Gd-EOB-DTPA enhanced MR imaging. Eur Radiol 2011; 21: 832-840
  • 168 Farchione A. et al. Evaluation of the Added Value of Diffusion-Weighted Imaging to Conventional Magnetic Resonance Imaging in Pancreatic Neuroendocrine Tumors and Comparison With 68Ga-DOTANOC Positron Emission Tomography/Computed Tomography. Pancreas 2016; 45: 345-354
  • 169 Niekel MC, Bipat S, Stoker J. Diagnostic imaging of colorectal liver metastases with CT, MR imaging, FDG PET, and/or FDG PET/CT: a meta-analysis of prospective studies including patients who have not previously undergone treatment. Radiology 2010; 257: 674-684
  • 170 Luersen GF. et al. Evaluation of Magnetic Resonance (MR) Biomarkers for Assessment of Response With Response Evaluation Criteria in Solid Tumors: Comparison of the Measurements of Neuroendocrine Tumor Liver Metastases (NETLM) With Various MR Sequences and at Multiple Phases of Contrast Administration. J Comput Assist Tomogr 2016; 40: 717-722
  • 171 Dromain C. et al. Detection of liver metastases from endocrine tumors: a prospective comparison of somatostatin receptor scintigraphy, computed tomography, and magnetic resonance imaging. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology 2005; 23: 70-78
  • 172 d’Assignies G. et al. High sensitivity of diffusion-weighted MR imaging for the detection of liver metastases from neuroendocrine tumors: comparison with T2-weighted and dynamic gadolinium-enhanced MR imaging. Radiology 2013; 268: 390-399
  • 173 Baur AD. et al. Maximizing Information From Routine Staging Computed Tomography in Functional Neuroendocrine Neoplasms: Are There Findings Indicating the Presence of Carcinoid Heart Disease?. J Comput Assist Tomogr 2016; 40: 277-282
  • 174 Rodriguez Laval V. et al. Mesenteric Fibrosis in Midgut Neuroendocrine Tumors: Functionality and Radiological Features. Neuroendocrinology 2018; 106: 139-147
  • 175 Naswa N. et al. (6)(8)Ga-DOTANOC PET/CT in patients with carcinoma of unknown primary of neuroendocrine origin. Clin Nucl Med 2012; 37: 245-251
  • 176 Prasad V. et al. Detection of unknown primary neuroendocrine tumours (CUP-NET) using (68)Ga-DOTA-NOC receptor PET/CT. Eur J Nucl Med Mol Imaging 2010; 37: 67-77
  • 177 Moller AK. et al. 18F-FDG PET/CT as a diagnostic tool in patients with extracervical carcinoma of unknown primary site: a literature review. Oncologist 2011; 16: 445-451
  • 178 Kwee TC. et al. FDG PET/CT in carcinoma of unknown primary. Eur J Nucl Med Mol Imaging 2010; 37: 635-644
  • 179 Seve P. et al. The role of 2-deoxy-2-[F-18]fluoro-D-glucose positron emission tomography in disseminated carcinoma of unknown primary site. Cancer 2007; 109: 292-299
  • 180 Knigge U. et al. ENETS Consensus Recommendations for the Standards of Care in Neuroendocrine Neoplasms: Follow-Up and Documentation. Neuroendocrinology 2017; 105: 310-319
  • 181 Murray SE. et al. Postoperative surveillance of small appendiceal carcinoid tumors. Am J Surg 2014; 207: 342-345 discussion 345.
  • 182 Pape UF. et al. ENETS Consensus Guidelines for Neuroendocrine Neoplasms of the Appendix (Excluding Goblet Cell Carcinomas). Neuroendocrinology 2016; 103: 144-152
  • 183 Boudreaux JP. et al. The NANETS consensus guideline for the diagnosis and management of neuroendocrine tumors: well-differenziated neuroendocrine tumors of the Jejunum, Ileum, Appendix, and Cecum. Pancreas 2010; 39: 753-766
  • 184 Kulke MH. et al. Neuroendocrine tumors, version 1.2015. J Natl Compr Canc Netw 2015; 13: 78-108
  • 185 Strosberg JR. et al. Relapse-free survival in patients with nonmetastatic, surgically resected pancreatic neuroendocrine tumors: an analysis of the AJCC and ENETS staging classifications. Ann Surg 2012; 256: 321-325
  • 186 Boninsegna L. et al. Malignant pancreatic neuroendocrine tumour: lymph node ratio and Ki67 are predictors of recurrence after curative resections. Eur J Cancer 2012; 48: 1608-1615
  • 187 Casadei R. et al. Are there prognostic factors related to recurrence in pancreatic endocrine tumors?. Pancreatology 2010; 10: 33-38
  • 188 Kim SJ. et al. Clinical course of neuroendocrine tumors with differenz origins (the pancreas, gastrointestinal tract, and lung). Am J Clin Oncol 2012; 35: 549-556
  • 189 Tsutsumi K. et al. Analysis of risk factors for recurrence after curative resection of well-differenziated pancreatic neuroendocrine tumors based on the new grading classification. J Hepatobiliary Pancreat Sci 2014; 21: 418-425
  • 190 Strosberg JR. et al. The North American Neuroendocrine Tumor Society Consensus Guidelines for Surveillance and Medical Management of Midgut Neuroendocrine Tumors. Pancreas 2017; 46: 707-714
  • 191 Shigematsu Y. et al. Recurrence 30 Years after Surgical Resection of a Localized Rectal Neuroendocrine Tumor. Intern Med 2017; 56: 1521-1525
  • 192 Thakker RV. Multiple endocrine neoplasia type 1 (MEN1) and type 4 (MEN4). Mol Cell Endocrinol 2014; 386: 2-15
  • 193 Binderup T. et al. 18F-fluorodeoxyglucose positron emission tomography predicts survival of patients with neuroendocrine tumors. Clinical Cancer Research: An Official Journal of the American Association for Cancer Research 2010; 16: 978-985
  • 194 Zhong DD, Shao LM, Cai JT. Endoscopic mucosal resection vs endoscopic submucosal dissection for rectal carcinoid tumours: a systematic review and meta-analysis. Colorectal Dis 2013; 15: 283-291
  • 195 Yang DH. et al. Cap-assisted EMR for rectal neuroendocrine tumors: comparisons with conventional EMR and endoscopic submucosal dissection (with videos). Gastrointest Endosc 2016; 83: 1015-1022 quiz 1023- e6.
  • 196 Zhou X. et al. Endoscopic resection therapies for rectal neuroendocrine tumors: a systematic review and meta-analysis. J Gastroenterol Hepatol 2014; 29: 259-268
  • 197 Cheung DY. et al. Circumferential submucosal incision prior to endoscopic mucosal resection provides comparable clinical outcomes to submucosal dissection for well-differenziated neuroendocrine tumors of the rectum. Surg Endosc 2015; 29: 1500-1505
  • 198 Sarker S. et al. Over-the-scope clip-assisted method for resection of full-thickness submucosal lesions of the gastrointestinal tract. Endoscopy 2014; 46: 758-761
  • 199 Grauer M. et al. Resection of rectal carcinoids with the newly introduced endoscopic full-thickness resection device. Endoscopy 2016; 48 (Suppl. 01) E123-E124
  • 200 Uygun A. et al. Long-term results of endoscopic resection for type I gastric neuroendocrine tumors. J Surg Oncol 2014; 109: 71-74
  • 201 Hopper AD. et al. En-bloc resection of multiple type 1 gastric carcinoid tumors by endoscopic multi-band mucosectomy. J Gastroenterol Hepatol 2009; 24: 1516-1521
  • 202 Chen WF. et al. Clinical impact of endoscopic submucosal dissection for gastric neuroendocrine tumors: a retrospective study from mainland China. ScientificWorldJournal 2012; 869769
  • 203 Li QL. et al. Endoscopic submucosal dissection for foregut neuroendocrine tumors: an initial study. World J Gastroenterol 2012; 18: 5799-5806
  • 204 Sato Y. et al. Usefulness of endoscopic submucosal dissection for type I gastric carcinoid tumors compared with endoscopic mucosal resection. Hepatogastroenterology 2013; 60: 1524-1529
  • 205 Scheerer F, Schmitt W. Non-functional duodenal neuroendocrine neoplasia in the proximal duodenum--case reports and proposal for a “high-risk-/low-risk-concept” in the decision for local endoscopic therapy. Z Gastroenterol 2013; 51: 1240-1250
  • 206 Yokoyama S. et al. Endoscopic resection of duodenal bulb neuroendocrine tumor larger than 10 mm in diameter. BMC Gastroenterol 2011; 11: 67
  • 207 Neumann H. et al. Resection of carcinoids in the duodenal bulb using the band ligation technique with the Duette mucosectomy device. Endoscopy 2013; 45 Suppl 2 UCTN: E365-E366
  • 208 Otaki Y. et al. Endoscopic mucosal resection with circumferential mucosal incision of duodenal carcinoid tumors. World J Gastrointest Endosc 2013; 5: 197-200
  • 209 Suzuki S. et al. Endoscopic submucosal dissection (ESD) for gastrointestinal carcinoid tumors. Surg Endosc 2012; 26: 759-763
  • 210 Matsumoto S, Miyatani H, Yoshida Y. Endoscopic submucosal dissection for duodenal tumors: a single-center experience. Endoscopy 2013; 45: 136-137
  • 211 Kim GH. et al. Endoscopic resection for duodenal carcinoid tumors: a multicenter, retrospective study. J Gastroenterol Hepatol 2014; 29: 318-324
  • 212 Kloppel G, Scherubl H. Neuroendocrine tumors of the stomach. Risk stratification and therapy. Pathologe 2010; 31: 182-187
  • 213 Ruszniewski P. et al. Well-differenziated gastric tumors/carcinomas. Neuroendocrinology 2006; 84: 158-164
  • 214 Grozinsky-Glasberg S. et al. Metastatic type 1 gastric carcinoid: a real threat or just a myth?. World J Gastroenterol 2013; 19: 8687-8695
  • 215 O’Toole D, Delle Fave G, Jensen RT. Gastric and duodenal neuroendocrine tumours. Best Pract Res Clin Gastroenterol 2012; 26: 719-735
  • 216 Scherubl H. et al. Management of early gastrointestinal neuroendocrine neoplasms. World J Gastrointest Endosc 2011; 3: 133-139
  • 217 Kulke MH. et al. NANETS treatment guidelines: well-differenziated neuroendocrine tumors of the stomach and pancreas. Pancreas 2010; 39: 735-752
  • 218 Scherubl H, Faiss S, Zeitz M. Neuroendocrine tumors of the gastrointestinal tract--diagnosis and therapy. Dtsch Med Wochenschr 2003; 128 (Suppl. 02) 81-83
  • 219 Gladdy RA. et al. Defining surgical indications for type I gastric carcinoid tumor. Ann Surg Oncol 2009; 16: 3154-3160
  • 220 Landry CS. et al. A proposed staging system for gastric carcinoid tumors based on an analysis of 1,543 patients. Ann Surg Oncol 2009; 16: 51-60
  • 221 Kwon YH. et al. Long-term follow up of endoscopic resection for type 3 gastric NET. World J Gastroenterol 2013; 19: 8703-8708
  • 222 Lawrence B. et al. A clinical perspective on gastric neuroendocrine neoplasia. Curr Gastroenterol Rep 2011; 13: 101-109
  • 223 Scherubl H. et al. Neuroendocrine tumors of the small bowels are on the rise: Early aspects and management. World J Gastrointest Endosc 2010; 2: 325-334
  • 224 Scherubl H. et al. Neuroendocrine tumors of the small bowels are on the rise: early tumors and their management. Z Gastroenterol 2010; 48: 406-413
  • 225 Kim SH. et al. Endoscopic treatment of duodenal neuroendocrine tumors. Clin Endosc 2013; 46: 656-661
  • 226 Kachare SD. et al. A modified duodenal neuroendocrine tumor staging schema better defines the risk of lymph node metastasis and disease-free survival. Am Surg 2014; 80: 821-826
  • 227 Randle RW. et al. Clinical outcomes for neuroendocrine tumors of the duodenum and ampulla of Vater: a population-based study. J Gastrointest Surg 2014; 18: 354-362
  • 228 Soga J. Endocrinocarcinomas (carcinoids and their variants) of the duodenum. An evaluation of 927 cases. J Exp Clin Cancer Res 2003; 22: 349-363
  • 229 Mekhjian HS, O’Dorisio TM. VIPoma syndrome. Semin Oncol 1987; 14: 282-291
  • 230 O’Dorisio TM, Mekhjian HS, Gaginella TS. Medical therapy of VIPomas. Endocrinol Metab Clin North Am 1989; 18: 545-556
  • 231 Makis W. et al. Glucagonoma Pancreatic Neuroendocrine Tumor Treated With 177Lu DOTATATE Induction and Maintenance Peptide Receptor Radionuclide Therapy. Clin Nucl Med 2015; 40: 877-879
  • 232 Park SJ. et al. Endoscopic resection as a possible radical treatment for duodenal gangliocytic paraganglioma: a report of four cases. Korean J Gastroenterol 2014; 63: 114-119
  • 233 Vanoli A. et al. Four Neuroendocrine Tumor Types and Neuroendocrine Carcinoma of the Duodenum: Analysis of 203 Cases. Neuroendocrinology 2017; 104: 112-125
  • 234 Min BH. et al. Management strategy for small duodenal carcinoid tumors: does conservative management with close follow-up represent an alternative to endoscopic treatment?. Digestion 2013; 87: 247-253
  • 235 Cheng CL. et al. Endoscopic snare papillectomy for tumors of the duodenal papillae. Gastrointest Endosc 2004; 60: 757-764
  • 236 Hatzitheoklitos E. et al. Carcinoid of the ampulla of Vater. Clinical characteristics and morphologic features. Cancer 1994; 73: 1580-1588
  • 237 Will U. et al. Endoscopic papillectomy: data of a prospective observational study. World J Gastroenterol 2013; 19: 4316-4324
  • 238 Albores-Saavedra J. et al. Cancers of the ampulla of vater: demographics, morphology, and survival based on 5,625 cases from the SEER program. J Surg Oncol 2009; 100: 598-605
  • 239 Stamm B, Hedinger CE, Saremaslani P. Duodenal and ampullary carcinoid tumors. A report of 12 cases with pathological characteristics, polypeptide content and relation to the MEN I syndrome and von Recklinghausen’s disease (neurofibromatosis). Virchows Arch A Pathol Anat Histopathol 1986; 408: 475-489
  • 240 Makhlouf HR, Burke AP, Sobin LH. Carcinoid tumors of the ampulla of Vater: a comparison with duodenal carcinoid tumors. Cancer 1999; 85: 1241-1249
  • 241 Albores-Saavedra J. et al. Carcinoids and high-grade neuroendocrine carcinomas of the ampulla of vater: a comparative analysis of 139 cases from the surveillance, epidemiology, and end results program – a population based study. Arch Pathol Lab Med 2010; 134: 1692-1696
  • 242 De Palma GD. et al. Endocrine carcinoma of the major papilla: report of two cases and review of the literature. Surg Oncol 2010; 19: 235-242
  • 243 Odabasi M. et al. Treatment of ampullary neuroendocrine tumor by endoscopic snare papillectomy. Am J Case Rep 2013; 14: 439-443
  • 244 Ito K. et al. Preoperative evaluation of ampullary neoplasm with EUS and transpapillary intraductal US: a prospective and histopathologically controlled study. Gastrointest Endosc 2007; 66: 740-747
  • 245 Modlin IM. et al. A three-decade analysis of 3,911 small intestinal neuroendocrine tumors: the rapid pace of no progress. Am J Gastroenterol 2007; 102: 1464-1473
  • 246 Yao JC. et al. One hundred years after “carcinoid”: epidemiology of and prognostic factors for neuroendocrine tumors in 35,825 cases in the United States. J Clin Oncol 2008; 26: 3063-3072
  • 247 Bailey AA. et al. Diagnosis and outcome of small bowel tumors found by capsule endoscopy: a three-center Australian experience. Am J Gastroenterol 2006; 101: 2237-2243
  • 248 Johanssen S. et al. The yield of wireless capsule endoscopy in the detection of neuroendocrine tumors in comparison with CT enteroclysis. Gastrointest Endosc 2006; 63: 660-665
  • 249 Bellutti M. et al. Detection of neuroendocrine tumors of the small bowel by double balloon enteroscopy. Dig Dis Sci 2009; 54: 1050-1058
  • 250 van Tuyl SA. et al. Detection of small-bowel neuroendocrine tumors by video capsule endoscopy. Gastrointest Endosc 2006; 64: 66-72
  • 251 Al Natour RH. et al. Tumor size and depth predict rate of lymph node metastasis in colon carcinoids and can be used to select patients for endoscopic resection. J Gastrointest Surg 2012; 16: 595-602
  • 252 Pulitzer M. et al. Microcarcinoids in large intestinal adenomas. Am J Surg Pathol 2006; 30: 1531-1536
  • 253 Lin J. et al. Composite intestinal adenoma-microcarcinoid. Am J Surg Pathol 2012; 36: 292-295
  • 254 Salaria SN. et al. Composite intestinal adenoma-microcarcinoid clues to diagnosing an under-recognised mimic of invasive adenocarcinoma. J Clin Pathol 2013; 66: 302-306
  • 255 Scherubl H. Rectal carcinoids are on the rise: early detection by screening endoscopy. Endoscopy 2009; 41: 162-165
  • 256 Scherubl H. et al. Clinically detected gastroenteropancreatic neuroendocrine tumors are on the rise: epidemiological changes in Germany. World J Gastroenterol 2013; 19: 9012-9019
  • 257 de Mestier L. et al. Updating the management of patients with rectal neuroendocrine tumors. Endoscopy 2013; 45: 1039-1046
  • 258 He L, Deng T, Luo H. Efficacy and safety of endoscopic resection therapies for rectal carcinoid tumors: a meta-analysis. Yonsei Med J 2015; 56: 72-81
  • 259 Jeon JH. et al. Endoscopic resection yields reliable outcomes for small rectal neuroendocrine tumors. Dig Endosc 2014; 26: 556-563
  • 260 Kasuga A. et al. Treatment strategy for rectal carcinoids: a clinicopathological analysis of 229 cases at a single cancer institution. J Gastroenterol Hepatol 2012; 27: 1801-1807
  • 261 Kim GU. et al. Clinical outcomes of rectal neuroendocrine tumors </= 10 mm following endoscopic resection. Endoscopy 2013; 45: 1018-1023
  • 262 Nakamura K. et al. Short- and long-term outcomes of endoscopic resection of rectal neuroendocrine tumours: analyses according to the WHO 2010 classification. Scand J Gastroenterol 2016; 51: 448-455
  • 263 Soga J. Early-stage carcinoids of the gastrointestinal tract: an analysis of 1914 reported cases. Cancer 2005; 103: 1587-1595
  • 264 McDermott FD. et al. Rectal carcinoids: a systematic review. Surg Endosc 2014; 28: 2020-2026
  • 265 Eick J. et al. Rectal neuroendocrine tumors: endoscopic therapy. Chirurg 2016; 87: 288-291
  • 266 Lee SP. et al. The effect of preceding biopsy on complete endoscopic resection in rectal carcinoid tumor. J Korean Med Sci 2014; 29: 512-518
  • 267 Scherubl H, de Mestier L, Cadiot G. Therapy of rectal carcinoids of 11 to 19 mm: a matter of debate. Gastrointest Endosc 2014; 80: 532-533
  • 268 Ramage JK. et al. ENETS Consensus Guidelines Update for Colorectal Neuroendocrine Neoplasms. Neuroendocrinology 2016; 103: 139-143
  • 269 Jurgensen C. et al. EUS-guided alcohol ablation of an insulinoma. Gastrointest Endosc 2006; 63: 1059-1062
  • 270 Lee MJ. et al. Successful endoscopic ultrasound-guided ethanol ablation of multiple insulinomas accompanied with multiple endocrine neoplasia type 1. Intern Med J 2013; 43: 948-950
  • 271 Levy MJ. et al. US-guided ethanol ablation of insulinomas: a new treatment option. Gastrointest Endosc 2012; 75: 200-206
  • 272 Bacchetti S. et al. Curative versus palliative surgical resection of liver metastases in patients with neuroendocrine tumors: a meta-analysis of observational studies. Gland Surg 2014; 3: 243-251
  • 273 Lesurtel M. et al. When should a liver resection be performed in patients with liver metastases from neuroendocrine tumours? A systematic review with practice recommendations. HPB (Oxford) 2015; 17: 17-22
  • 274 Yuan CH. et al. Meta-analysis of Liver Resection Versus Nonsurgical Treatments for Pancreatic Neuroendocrine Tumors with Liver Metastases. Ann Surg Oncol 2016; 23: 244-249
  • 275 Grandhi MS, Lafaro KJ, Pawlik TM. Role of Locoregional and Systemic Approaches for the Treatment of Patients with Metastatic Neuroendocrine Tumors. J Gastrointest Surg 2015; 19: 2273-2282
  • 276 Mayo SC. et al. Surgical management of hepatic neuroendocrine tumor metastasis: results from an international multi-institutional analysis. Ann Surg Oncol 2010; 17: 3129-3136
  • 277 Watzka FM. et al. Surgical therapy of neuroendocrine neoplasm with hepatic metastasis: patient selection and prognosis. Langenbecks Arch Surg 2015; 400: 349-358
  • 278 Norlen O. et al. Outcome after resection and radiofrequency ablation of liver metastases from small intestinal neuroendocrine tumours. Br J Surg 2013; 100: 1505-1514
  • 279 Osborne DA. et al. Improved outcome with cytoreduction versus embolization for symptomatic hepatic metastases of carcinoid and neuroendocrine tumors. Ann Surg Oncol 2006; 13: 572-581
  • 280 Du S. et al. Aggressive Locoregional Treatment Improves the Outcome of Liver Metastases from Grade 3 Gastroenteropancreatic Neuroendocrine Tumors. Medicine (Baltimore) 2015; 94: e1429
  • 281 Bartlett EK. et al. Surgery for metastatic neuroendocrine tumors with occult primaries. J Surg Res 2013; 184: 221-227
  • 282 Frilling A. et al. Recommendations for management of patients with neuroendocrine liver metastases. Lancet Oncol 2014; 15: e8-e21
  • 283 Partelli S. et al. ENETS Consensus Guidelines for Standard of Care in Neuroendocrine Tumours: Surgery for Small Intestinal and Pancreatic Neuroendocrine Tumours. Neuroendocrinology 2017; 105: 255-265
  • 284 Frilling A. et al. Treatment of liver metastases from neuroendocrine tumours in relation to the extent of hepatic disease. Br J Surg 2009; 96: 175-184
  • 285 Bowers KA. et al. Feasibility study of two-stage hepatectomy for bilobar liver metastases. Am J Surg 2012; 203: 691-697
  • 286 Stoeltzing O. et al. Staged surgery with neoadjuvant 90Y-DOTATOC therapy for down-sizing synchronous bilobular hepatic metastases from a neuroendocrine pancreatic tumor. Langenbecks Arch Surg 2010; 395: 185-192
  • 287 Gaujoux S. et al. Synchronous resection of primary and liver metastases for neuroendocrine tumors. Ann Surg Oncol 2012; 19: 4270-4277
  • 288 Norlen O. et al. Long-term results of surgery for small intestinal neuroendocrine tumors at a tertiary referral center. World J Surg 2012; 36: 1419-1431
  • 289 Keutgen XM, Nilubol N, Kebebew E. Malignant-functioning neuroendocrine tumors of the pancreas: A survival analysis. Surgery 2016; 159: 1382-1389
  • 290 Le Treut YP. et al. Liver transplantation for neuroendocrine tumors in Europe-results and trends in patient selection: a 213-case European liver transplant registry study. Ann Surg 2013; 257: 807-815
  • 291 Norlen O. et al. Indication for liver transplantation in young patients with small intestinal NETs is rare?. World J Surg 2014; 38: 742-747
  • 292 Elias D. et al. Neuroendocrine carcinomas: optimal surgery of peritoneal metastases (and associated intra-abdominal metastases). Surgery 2014; 155: 5-12
  • 293 Begum N. et al. Diagnostics and therapy for neuroendocrine neoplasia of an unknown primary – a plea for open exploration. Zentralbl Chir 2014; 139: 284-291
  • 294 Begum N. et al. CUP Syndrome in Neuroendocrine Neoplasia: Analysis of Risk Factors and Impact of Surgical Intervention. World J Surg 2015; 39: 1443-1451
  • 295 Borch K. et al. Gastric carcinoids: biologic behavior and prognosis after differenziated treatment in relation to type. Ann Surg 2005; 242: 64-73
  • 296 Basuroy R. et al. Review article: the investigation and management of gastric neuroendocrine tumours. Aliment Pharmacol Ther 2014; 39: 1071-1084
  • 297 Partelli S. et al. GEP-NETS update: a review on surgery of gastro-entero-pancreatic neuroendocrine tumors. Eur J Endocrinol 2014; 171: R153-R162
  • 298 Ozao-Choy J. et al. Laparoscopic antrectomy for the treatment of type I gastric carcinoid tumors. J Surg Res 2010; 162: 22-25
  • 299 Modlin IM, Lye KD, Kidd M. A 5-decade analysis of 13,715 carcinoid tumors. Cancer 2003; 97: 934-959
  • 300 Tomassetti P. et al. Treatment of type II gastric carcinoid tumors with somatostatin analogues. N Engl J Med 2000; 343: 551-554
  • 301 Norton JA. et al. Does the use of routine duodenotomy (DUODX) affect rate of cure, development of liver metastases, or survival in patients with Zollinger-Ellison syndrome?. Ann Surg 2004; 239: 617-625 discussion 626.
  • 302 Fitzgerald TL. et al. Increasing incidence of duodenal neuroendocrine tumors: Incidental discovery of indolent disease?. Surgery 2015; 158: 466-471
  • 303 Osera S. et al. Endoscopic submucosal resection with a ligation device for the treatment of duodenal neuroendocrine tumors. Surg Endosc 2016; 30: 3928-3932
  • 304 Shroff SR. et al. Efficacy of Endoscopic Mucosal Resection for Management of Small Duodenal Neuroendocrine Tumors. Surg Laparosc Endosc Percutan Tech 2015; 25: e134-e139
  • 305 Rosentraeger MJ. et al. Syndromic versus non-syndromic sporadic gastrin-producing neuroendocrine tumors of the duodenum: comparison of pathological features and biological behavior. Virchows Arch 2016; 468: 277-287
  • 306 Fischer L, Mehrabi A, Buchler MW. [Neuroendocrine tumors of the duodenum and pancreas. Surgical strategy]. Chirurg 2011; 82: 583-590
  • 307 Ambrose T. et al. Case report: recurrent acute pancreatitis secondary to papillary somatostatinoma--a new association. Pancreatology 2013; 13: 186-188
  • 308 Beger HG, Mayer B, Rau BM. Parenchyma-Sparing, Limited Pancreatic Head Resection for Benign Tumors and Low-Risk Periampullary Cancer--a Systematic Review. J Gastrointest Surg 2016; 20: 206-217
  • 309 Jang SK. et al. Differenzial diagnosis of pancreatic cancer from other solid tumours arising from the periampullary area on MDCT. Eur Radiol 2015; 25: 2880-2888
  • 310 Dumitrascu T. et al. Neuroendocrine tumours of the ampulla of Vater: clinico-pathological features, surgical approach and assessment of prognosis. Langenbecks Arch Surg 2012; 397: 933-943
  • 311 Bartsch DK. et al. Impact of lymphadenectomy on survival after surgery for sporadic gastrinoma. Br J Surg 2012; 99: 1234-1240
  • 312 Hill JS. et al. Pancreatic neuroendocrine tumors: the impact of surgical resection on survival. Cancer 2009; 115: 741-751
  • 313 Bettini R. et al. Tumor size correlates with malignancy in nonfunctioning pancreatic endocrine tumor. Surgery 2011; 150: 75-82
  • 314 Gaujoux S. et al. Observational study of natural history of small sporadic nonfunctioning pancreatic neuroendocrine tumors. J Clin Endocrinol Metab 2013; 98: 4784-4789
  • 315 Fernandez-Cruz L. et al. Is laparoscopic resection adequate in patients with neuroendocrine pancreatic tumors?. World J Surg 2008; 32: 904-917
  • 316 Falconi M. et al. Parenchyma-preserving resections for small nonfunctioning pancreatic endocrine tumors. Ann Surg Oncol 2010; 17: 1621-1627
  • 317 Starke A. et al. Malignant metastatic insulinoma-postoperative treatment and follow-up. World J Surg 2005; 29: 789-793
  • 318 Won JG. et al. Clinical features and morphological characterization of 10 patients with noninsulinoma pancreatogenous hypoglycaemia syndrome (NIPHS). Clin Endocrinol (Oxf) 2006; 65: 566-578
  • 319 Ocal G. et al. Clinical characteristics of recessive and dominant congenital hyperinsulinism due to mutation(s) in the ABCC8 / KCNJ11 genes encoding the ATP-sensitive potasium channel in the pancreatic beta cell. J Pediatr Endocrinol Metab 2011; 24: 1019-1023
  • 320 Mehrabi A. et al. A systematic review of localization, surgical treatment options, and outcome of insulinoma. Pancreas 2014; 43: 675-686
  • 321 Drymousis P. et al. Laparoscopic versus open pancreas resection for pancreatic neuroendocrine tumours: a systematic review and meta-analysis. HPB (Oxford) 2014; 16: 397-406
  • 322 Su AP. et al. Is laparoscopic approach for pancreatic insulinomas safe? Results of a systematic review and meta-analysis. J Surg Res 2014; 186: 126-134
  • 323 Iacobone M, Citton M, Nitti D. Laparoscopic distal pancreatectomy: up-to-date and literature review. World J Gastroenterol 2012; 18: 5329-5337
  • 324 Xourafas D. et al. Distal pancreatic resection for neuroendocrine tumors: is laparoscopic really better than open?. J Gastrointest Surg 2015; 19: 831-840
  • 325 Sudo T. et al. Middle pancreatectomy with pancreaticogastrostomy: a technique, operative outcomes, and long-term pancreatic function. J Surg Oncol 2010; 101: 61-65
  • 326 Du ZY. et al. Middle segmental pancreatectomy: a safe and organ-preserving option for benign and low-grade malignant lesions. World J Gastroenterol 2013; 19: 1458-1465
  • 327 Starke A. et al. Islet hyperplasia in adults: challenge to preoperatively diagnose non-insulinoma pancreatogenic hypoglycemia syndrome. World J Surg 2006; 30: 670-679
  • 328 Tseng LM. et al. The role of intra-arterial calcium stimulation test with hepatic venous sampling (IACS) in the management of occult insulinomas. Ann Surg Oncol 2007; 14: 2121-2127
  • 329 Gimm O. et al. Intra-operative quick insulin assay to confirm complete resection of insulinomas guided by selective arterial calcium injection (SACI). Langenbecks Arch Surg 2007; 392: 679-684
  • 330 Norton JA. et al. Surgery to cure the Zollinger-Ellison syndrome. N Engl J Med 1999; 341: 635-644
  • 331 Norton JA. et al. Surgery increases survival in patients with gastrinoma. Ann Surg 2006; 244: 410-419
  • 332 Fraker DL. et al. Surgery in Zollinger-Ellison syndrome alters the natural history of gastrinoma. Ann Surg 1994; 220: 320-328 discussion 328–330
  • 333 Fendrich V. et al. Surgical management of pancreatic endocrine tumors. Nat Rev Clin Oncol 2009; 6: 419-428
  • 334 Lorenz K, Dralle H. Surgical treatment of sporadic gastrinoma. Wien Klin Wochenschr 2007; 119: 597-601
  • 335 Norton JA, Jensen RT. Resolved and unresolved controversies in the surgical management of patients with Zollinger-Ellison syndrome. Ann Surg 2004; 240: 757-773
  • 336 Tonelli F. et al. Pancreatectomy in multiple endocrine neoplasia type 1-related gastrinomas and pancreatic endocrine neoplasias. Ann Surg 2006; 244: 61-70
  • 337 Sugg SL. et al. A prospective study of intraoperative methods to diagnose and resect duodenal gastrinomas. Ann Surg 1993; 218: 138-144
  • 338 Morrow EH, Norton JA. Surgical management of Zollinger-Ellison syndrome; state of the art. Surg Clin North Am 2009; 89: 1091-1103
  • 339 Norton JA. et al. Possible primary lymph node gastrinoma: occurrence, natural history, and predictive factors: a prospective study. Ann Surg 2003; 237: 650-657 discussion 657–965
  • 340 Norton JA, Jensen RT. Role of surgery in Zollinger-Ellison syndrome. J Am Coll Surg 2007; 205 (Suppl. 04) S34-S37
  • 341 Kisker O. et al. Localization, malignant potenzial, and surgical management of gastrinomas. World J Surg 1998; 22: 651-657 discussion 657–658
  • 342 Jann H. et al. Neuroendocrine tumors of midgut and hindgut origin: tumor-node-metastasis classification determines clinical outcome. Cancer 2011; 117: 3332-3341
  • 343 Habbe N. et al. Outcome of surgery for ileojejunal neuroendocrine tumors. Surg Today 2013; 43: 1168-1174
  • 344 Landry CS. et al. Resection of at-risk mesenteric lymph nodes is associated with improved survival in patients with small bowel neuroendocrine tumors. World J Surg 2013; 37: 1695-1700
  • 345 Kim MK. et al. Prognostic significance of lymph node metastases in small intestinal neuroendocrine tumors. Neuroendocrinology 2015; 101: 58-65
  • 346 Figueiredo MN. et al. Surgery for small-bowel neuroendocrine tumors: is there any benefit of the laparoscopic approach?. Surg Endosc 2014; 28: 1720-1726
  • 347 Han SL. et al. Surgically treated primary malignant tumor of small bowel: a clinical analysis. World J Gastroenterol 2010; 16: 1527-1532
  • 348 Schindl M. et al. Treatment of small intestinal neuroendocrine tumors: is an extended multimodal approach justified?. World J Surg 2002; 26: 976-984
  • 349 Givi B. et al. Operative resection of primary carcinoid neoplasms in patients with liver metastases yields significantly better survival. Surgery 2006; 140: 891-897 discussion 897–889
  • 350 Ahmed A. et al. Midgut neuroendocrine tumours with liver metastases: results of the UKINETS study. Endocr Relat Cancer 2009; 16: 885-894
  • 351 Strosberg J, Gardner N, Kvols L. Survival and prognostic factor analysis of 146 metastatic neuroendocrine tumors of the mid-gut. Neuroendocrinology 2009; 89: 471-476
  • 352 Griniatsos J, Michail O. Appendiceal neuroendocrine tumors: Recent insights and clinical implications. World J Gastrointest Oncol 2010; 2: 192-196
  • 353 Kleiman DA. et al. Features Associated With Metastases Among Well-Differenziated Neuroendocrine (Carcinoid) Tumors of the Appendix: The Significance of Small Vessel Invasion in Addition to Size. Dis Colon Rectum 2015; 58: 1137-1143
  • 354 Rossi RE. et al. Goblet cell appendiceal tumors--management dilemmas and long-term outcomes. Surg Oncol 2015; 24: 47-53
  • 355 Boxberger N. et al. Neuroendocrine tumors of the appendix in children and adolescents. Pediatr Blood Cancer 2013; 60: 65-70
  • 356 Pahlavan PS, Kanthan R. Goblet cell carcinoid of the appendix. World J Surg Oncol 2005; 3: 36
  • 357 Lamarca A. et al. Appendiceal Goblet Cell Carcinoids: Management Considerations from a Reference Peritoneal Tumour Service Centre and ENETS Centre of Excellence. Neuroendocrinology 2016; 103: 500-517
  • 358 Rosenberg JM, Welch JP. Carcinoid tumors of the colon. A study of 72 patients. Am J Surg 1985; 149: 775-779
  • 359 Gustafsson BI. et al. Uncommon cancers of the small intestine, appendix and colon: an analysis of SEER 1973–2004, and current diagnosis and therapy. Int J Oncol 2008; 33: 1121-1131
  • 360 Smith JD. et al. A retrospective review of 126 high-grade neuroendocrine carcinomas of the colon and rectum. Ann Surg Oncol 2014; 21: 2956-2962
  • 361 Shafqat H. et al. Survival of patients with neuroendocrine carcinoma of the colon and rectum: a population-based analysis. Dis Colon Rectum 2015; 58: 294-303
  • 362 Shigeta K. et al. Long-term outcome of patients with locally resected high- and low-risk rectal carcinoid tumors. J Gastrointest Surg 2014; 18: 768-773
  • 363 Sekiguchi M. et al. Excellent prognosis following endoscopic resection of patients with rectal neuroendocrine tumors despite the frequent presence of lymphovascular invasion. J Gastroenterol 2015; 50: 1184-1189
  • 364 Shields CJ, Tiret E, Winter DC. Carcinoid tumors of the rectum: a multi-institutional international collaboration. Ann Surg 2010; 252: 750-755
  • 365 Zhou X. et al. Factors associated with lymph node metastasis in radically resected rectal carcinoids: a systematic review and meta-analysis. J Gastrointest Surg 2013; 17: 1689-1697
  • 366 Sauven P. et al. Anorectal carcinoid tumors. Is aggressive surgery warranted?. Ann Surg 1990; 211: 67-71
  • 367 Bonjer HJ. et al. A randomized trial of laparoscopic versus open surgery for rectal cancer. N Engl J Med 2015; 372: 1324-1332
  • 368 Brieau B. et al. Radiochemotherapy Versus Surgery in Nonmetastatic Anorectal Neuroendocrine Carcinoma: A Multicenter Study by the Association des Gastro-Enterologues Oncologues. Medicine (Baltimore) 2015; 94: e1864
  • 369 Gibril F. et al. Prospective study of the natural history of gastrinoma in patients with MEN1: definition of an aggressive and a nonaggressive form. J Clin Endocrinol Metab 2001; 86: 5282-5293
  • 370 Bartsch DK. et al. Higher risk of aggressive pancreatic neuroendocrine tumors in MEN1 patients with MEN1 mutations affecting the CHES1 interacting MENIN domain. J Clin Endocrinol Metab 2014; 99: E2387-E2391
  • 371 Lopez CL. et al. Partial pancreaticoduodenectomy can provide cure for duodenal gastrinoma associated with multiple endocrine neoplasia type 1. Ann Surg 2013; 257: 308-314
  • 372 Bartsch D, Albers M. Controversies in surgery for multiple endocrine neoplasia type 1-associated Zollinger–Ellison syndrome. International Journal of Endocrine Oncology 2015 2. Nr. 4, 30 Nov 2015. https://doi.org/10.2217/ije.15.17
  • 373 Triponez F. et al. Is surgery beneficial for MEN1 patients with small (< or = 2 cm), nonfunctioning pancreaticoduodenal endocrine tumor? An analysis of 65 patients from the GTE. World J Surg 2006; 30: 654-662 discussion 663–664
  • 374 Kouvaraki MA. et al. Management of pancreatic endocrine tumors in multiple endocrine neoplasia type 1. World J Surg 2006; 30: 643-653
  • 375 Lopez CL. et al. Long-term results of surgery for pancreatic neuroendocrine neoplasms in patients with MEN1. Langenbecks Arch Surg 2011; 396: 1187-1196
  • 376 Partelli S. et al. Active Surveillance versus Surgery of Nonfunctioning Pancreatic Neuroendocrine Neoplasms </= 2 cm in MEN1 Patients. Neuroendocrinology 2016; 103: 779-786
  • 377 Lopez CL. et al. Minimally Invasive Versus Open Pancreatic Surgery in Patients with Multiple Endocrine Neoplasia Type 1. World J Surg 2016; 40: 1729-1736
  • 378 Goudet P. et al. Gender-related differences in MEN1 lesion occurrence and diagnosis: a cohort study of 734 cases from the Groupe d’etude des Tumeurs Endocrines. Eur J Endocrinol 2011; 165: 97-105
  • 379 Hanazaki K. et al. Surgery for a gastroenteropancreatic neuroendocrine tumor (GEPNET) in multiple endocrine neoplasia type 1. Surg Today 2013; 43: 229-236
  • 380 Bartsch DK. et al. Enucleation and limited pancreatic resection provide long-term cure for insulinoma in multiple endocrine neoplasia type 1. Neuroendocrinology 2013; 98: 290-298
  • 381 Goncalves TD. et al. Penetrance of functioning and nonfunctioning pancreatic neuroendocrine tumors in multiple endocrine neoplasia type 1 in the second decade of life. J Clin Endocrinol Metab 2014; 99: E89-E96
  • 382 Giudici F. et al. Surgical management of insulinomas in multiple endocrine neoplasia type 1. Pancreas 2012; 41: 547-553
  • 383 Akerstrom G, Stalberg P, Hellman P. Surgical management of pancreatico-duodenal tumors in multiple endocrine neoplasia syndrome type 1. Clinics (Sao Paulo) 2012; 67 (Suppl. 01) 173-178
  • 384 Machado MC. Surgical treatment of pancreatic endocrine tumors in multiple endocrine neoplasia type 1. Clinics (Sao Paulo) 2012; 67 (Suppl. 01) 145-148
  • 385 Barbier L. et al. Impact of total pancreatectomy: short- and long-term assessment. HPB (Oxford) 2013; 15: 882-892
  • 386 Pavel M. et al. ENETS Consensus Guidelines Update for the Management of Distant Metastatic Disease of Intestinal, Pancreatic, Bronchial Neuroendocrine Neoplasms (NEN) and NEN of Unknown Primary Site. Neuroendocrinology 2016; 103: 172-185
  • 387 Rinke A. et al. Placebo-controlled, double-blind, prospective, randomized study on the effect of octreotide LAR in the control of tumor growth in patients with metastatic neuroendocrine midgut tumors: a report from the PROMID Study Group. J Clin Oncol 2009; 27: 4656-4663
  • 388 Caplin ME. et al. Lanreotide in metastatic enteropancreatic neuroendocrine tumors. N Engl J Med 2014; 371: 224-233
  • 389 Rinke A. et al. Placebo-Controlled, Double-Blind, Prospective, Randomized Study on the Effect of Octreotide LAR in the Control of Tumor Growth in Patients with Metastatic Neuroendocrine Midgut Tumors (PROMID): Results of Long-Term Survival. Neuroendocrinology 2017; 104: 26-32
  • 390 Caplin ME. et al. Anti-tumour effects of lanreotide for pancreatic and intestinal neuroendocrine tumours: the CLARINET open-label extension study. Endocr Relat Cancer 2016; 23: 191-199
  • 391 Oberg K. et al. Consensus report on the use of somatostatin analogs for the management of neuroendocrine tumors of the gastroenteropancreatic system. Ann Oncol 2004; 15: 966-973
  • 392 Jann H. et al. Impact of octreotide long-acting release on tumour growth control as a first-line treatment in neuroendocrine tumours of pancreatic origin. Neuroendocrinology 2013; 98: 137-143
  • 393 Kwekkeboom DJ. et al. Treatment with the radiolabeled somatostatin analog [177 Lu-DOTA 0, Tyr3]octreotate: toxicity, efficacy, and survival. J Clin Oncol 2008; 26: 2124-2130
  • 394 Gupta S. et al. Hepatic arterial embolization and chemoembolization for the treatment of patients with metastatic neuroendocrine tumors: variables affecting response rates and survival. Cancer 2005; 104: 1590-1602
  • 395 Kouvaraki MA. et al. Fluorouracil, doxorubicin, and streptozocin in the treatment of patients with locally advanced and metastatic pancreatic endocrine carcinomas. J Clin Oncol 2004; 22: 4762-4771
  • 396 Saxena A. et al. Factors predicting response and survival after yttrium-90 radioembolization of unresectable neuroendocrine tumor liver metastases: a critical appraisal of 48 cases. Ann Surg 2010; 251: 910-916
  • 397 Modlin IM. et al. Review article: somatostatin analogues in the treatment of gastroenteropancreatic neuroendocrine (carcinoid) tumours. Aliment Pharmacol Ther 2010; 31: 169-188
  • 398 Susini C, Buscail L. Rationale for the use of somatostatin analogs as antitumor agents. Ann Oncol 2006; 17: 1733-1742
  • 399 Yao JC. et al. Phase III Prospective Randomized Comparison Trial of Depot Octreotide Plus Interferon Alfa-2b Versus Depot Octreotide Plus Bevacizumab in Patients With Advanced Carcinoid Tumors: SWOG S0518. J Clin Oncol 2017; 35: 1695-1703
  • 400 Oberg K, Eriksson B. The role of interferons in the management of carcinoid tumors. Acta Oncol 1991; 30: 519-522
  • 401 Eriksson B, Oberg K. An update of the medical treatment of malignant endocrine pancreatic tumors. Acta Oncol 1993; 32: 203-208
  • 402 Faiss S. et al. Prospective, randomized, multicenter trial on the antiproliferative effect of lanreotide, interferon alfa, and their combination for therapy of metastatic neuroendocrine gastroenteropancreatic tumors--the International Lanreotide and Interferon Alfa Study Group. J Clin Oncol 2003; 21: 2689-2696
  • 403 Dahan L. et al. Phase III trial of chemotherapy using 5-fluorouracil and streptozotocin compared with interferon alpha for advanced carcinoid tumors: FNCLCC-FFCD 9710. Endocr Relat Cancer 2009; 16: 1351-1361
  • 404 Arnold R. et al. Octreotide versus octreotide plus interferon-alpha in endocrine gastroenteropancreatic tumors: a randomized trial. Clin Gastroenterol Hepatol 2005; 3: 761-771
  • 405 Kölby L. et al. Randomized clinical trial of the effect of interferon alpha on survival in patients with disseminated midgut carcinoid tumours. Br J Surg 2003; 90: 687-693
  • 406 Pavel ME. et al. Efficacy and tolerability of pegylated IFN-alpha in patients with neuroendocrine gastroenteropancreatic carcinomas. J Interferon Cytokine Res 2006; 26: 8-13
  • 407 Kaemmerer D. et al. Neoadjuvant peptide receptor radionuclide therapy for an inoperable neuroendocrine pancreatic tumor. World J Gastroenterol 2009; 15: 5867-5870
  • 408 Barber TW. et al. The potenzial for induction peptide receptor chemoradionuclide therapy to render inoperable pancreatic and duodenal neuroendocrine tumours resectable. Eur J Surg Oncol 2012; 38: 64-71
  • 409 Devata S, Kim EJ. Neoadjuvant chemotherapy with capecitabine and temozolomide for unresectable pancreatic neuroendocrine tumor. Case Rep Oncol 2012; 5: 622-626
  • 410 van Vliet EI. et al. Neoadjuvant Treatment of Nonfunctioning Pancreatic Neuroendocrine Tumors with [177Lu-DOTA0, Tyr3]Octreotate. J Nucl Med 2015; 56: 1647-1653
  • 411 Moertel CG, Hanley JA, Johnson LA. Streptozocin alone compared with streptozocin plus fluorouracil in the treatment of advanced islet-cell carcinoma. N Engl J Med 1980; 303: 1189-1194
  • 412 Moertel CG. et al. Streptozocin-doxorubicin, streptozocin-fluorouracil or chlorozotocin in the treatment of advanced islet-cell carcinoma. N Engl J Med 1992; 326: 519-523
  • 413 Dilz LM. et al. Streptozocin/5-fluorouracil chemotherapy is associated with durable response in patients with advanced pancreatic neuroendocrine tumours. Eur J Cancer 2015; 51: 1253-1262
  • 414 Krug S. et al. Streptozocin-Based Chemotherapy in Patients with Advanced Neuroendocrine Neoplasms – Predictive and Prognostic Markers for Treatment Stratification. PLoS One 2015; 10: e0143822
  • 415 Clewemar Antonodimitrakis P. et al. Streptozocin and 5-Fluorouracil for the treatment of Pancreatic Neuroendocrine Tumors: Efficacy, Prognostic Factors and Toxicity. Neuroendocrinology 2016; 103: 345-353
  • 416 Ducreux M. et al. Bevacizumab combined with 5-FU/streptozocin in patients with progressive metastatic well-differenziated pancreatic endocrine tumours (BETTER trial)--a phase II non-randomised trial. Eur J Cancer 2014; 50: 3098-3106
  • 417 Mueller D. et al. Low dose DTIC is effective and safe in pretreated patients with well differenziated neuroendocrine tumors. BMC Cancer 2016; 16: 645
  • 418 Strosberg JR. et al. First-line chemotherapy with capecitabine and temozolomide in patients with metastatic pancreatic endocrine carcinomas. Cancer 2011; 117: 268-275
  • 419 Koumarianou A. et al. Temozolomide in Advanced Neuroendocrine Neoplasms: Pharmacological and Clinical Aspects. Neuroendocrinology 2015; 101: 274-288
  • 420 Cives M. et al. Analysis of potenzial response predictors to capecitabine/temozolomide in metastatic pancreatic neuroendocrine tumors. Endocr Relat Cancer 2016; 23: 759-767
  • 421 Childs A. et al. Ki-67 index and response to chemotherapy in patients with neuroendocrine tumours. Endocr Relat Cancer 2016; 23: 563-570
  • 422 Yao JC. et al. Daily oral everolimus activity in patients with metastatic pancreatic neuroendocrine tumors after failure of cytotoxic chemotherapy: a phase II trial. J Clin Oncol 2010; 28: 69-76
  • 423 Kulke MH. et al. A randomized, open-label, phase 2 study of everolimus in combination with pasireotide LAR or everolimus alone in advanced, well-differenziated, progressive pancreatic neuroendocrine tumors: COOPERATE-2 trial. Ann Oncol 2017; 28: 1309-1315
  • 424 Yao JC. et al. Everolimus for advanced pancreatic neuroendocrine tumors. N Engl J Med 2011; 364: 514-523
  • 425 Raymond E. et al. Sunitinib malate for the treatment of pancreatic neuroendocrine tumors. N Engl J Med 2011; 364: 501-513
  • 426 Kulke MH, Bergsland EK, Yao JC. Glycemic control in patients with insulinoma treated with everolimus. N Engl J Med 2009; 360: 195-197
  • 427 Lombard-Bohas C. et al. Impact of prior chemotherapy use on the efficacy of everolimus in patients with advanced pancreatic neuroendocrine tumors: a subgroup analysis of the phase III RADIANT-3 trial. Pancreas 2015; 44: 181-189
  • 428 Lamarca A. et al. Chemotherapy for advanced non-pancreatic well-differenziated neuroendocrine tumours of the gastrointestinal tract, a systematic review and meta-analysis: A lost cause?. Cancer Treat Rev 2016; 44: 26-41
  • 429 Alonso-Gordoa T, Capdevila J, Grande E. GEP-NETs update: Biotherapy for neuroendocrine tumours. Eur J Endocrinol 2015; 172: R31-R46
  • 430 Strosberg J. et al. Phase 3 Trial of 177Lu-Dotatate for Midgut Neuroendocrine Tumors. N Engl J Med 2017; 376: 125-135
  • 431 Sun W. et al. Phase II/III study of doxorubicin with fluorouracil compared with streptozocin with fluorouracil or dacarbazine in the treatment of advanced carcinoid tumors: Eastern Cooperative Oncology Group Study E1281. J Clin Oncol 2005; 23: 4897-4904
  • 432 Abdel-Rahman O, Fouad M. Temozolomide-based combination for advanced neuroendocrine neoplasms: a systematic review of the literature. Future Oncol 2015; 11: 1275-1290
  • 433 Spada F. et al. Oxaliplatin-Based Chemotherapy in Advanced Neuroendocrine Tumors: Clinical Outcomes and Preliminary Correlation with Biological Factors. Neuroendocrinology 2016; 106: 806-814
  • 434 Medley L. et al. Phase II study of single agent capecitabine in the treatment of metastatic non-pancreatic neuroendocrine tumours. Br J Cancer 2011; 104: 1067-1070
  • 435 Mitry E. et al. Bevacizumab plus capecitabine in patients with progressive advanced well-differenziated neuroendocrine tumors of the gastro-intestinal (GI-NETs) tract (BETTER trial)--a phase II non-randomised trial. Eur J Cancer 2014; 50: 3107-3115
  • 436 Berruti A. et al. Bevacizumab plus octreotide and metronomic capecitabine in patients with metastatic well-to-moderately differenziated neuroendocrine tumors: the XELBEVOCT study. BMC Cancer 2014; 14: 184
  • 437 Kunz PL. et al. Oxaliplatin-Fluoropyrimidine Chemotherapy Plus Bevacizumab in Advanced Neuroendocrine Tumors: An Analysis of 2 Phase II Trials. Pancreas 2016; 45: 1394-1400
  • 438 Lee HE. et al. Sporadic Gastric Well-Differenziated Neuroendocrine Tumors Have a Higher Ki-67 Proliferative Index. Endocr Pathol 2016; 27: 259-267
  • 439 Chagpar R. et al. Neuroendocrine tumors of the colon and rectum: prognostic relevance and comparative performance of current staging systems. Ann Surg Oncol 2013; 20: 1170-1178
  • 440 Kulke MH. et al. Activity of sunitinib in patients with advanced neuroendocrine tumors. J Clin Oncol 2008; 26: 3403-3410
  • 441 Pavel ME. et al. Everolimus plus octreotide long-acting repeatable for the treatment of advanced neuroendocrine tumours associated with carcinoid syndrome (RADIANT-2): a randomised, placebo-controlled, phase 3 study. Lancet 2011; 378: 2005-2012
  • 442 Yao JC. et al. Everolimus for the treatment of advanced, non-functional neuroendocrine tumours of the lung or gastrointestinal tract (RADIANT-4): a randomised, placebo-controlled, phase 3 study. Lancet 2015; 387: 968-977
  • 443 Singh S. et al. Everolimus in Neuroendocrine Tumors of the Gastrointestinal Tract and Unknown Primary. Neuroendocrinology 2018; 106: 211-220
  • 444 Imhof A. et al. Response, survival, and long-term toxicity after therapy with the radiolabeled somatostatin analogue [90Y-DOTA]-TOC in metastasized neuroendocrine cancers. J Clin Oncol 2011; 29: 2416-2423
  • 445 Lombard-Bohas C. et al. Thirteen-month registration of patients with gastroenteropancreatic endocrine tumours in France. Neuroendocrinology 2009; 89: 217-222
  • 446 Garcia-Carbonero R. et al. Incidence, patterns of care and prognostic factors for outcome of gastroenteropancreatic neuroendocrine tumors (GEP-NETs): results from the National Cancer Registry of Spain (RGETNE). Ann Oncol 2010; 21: 1794-1803
  • 447 Schreiter NF. et al. Searching for primaries in patients with neuroendocrine tumors (NET) of unknown primary and clinically suspected NET: Evaluation of Ga-68 DOTATOC PET/CT and In-111 DTPA octreotide SPECT/CT. Radiol Oncol 2014; 48: 339-347
  • 448 Fazio N, Spada F, Giovannini M. Chemotherapy in gastroenteropancreatic (GEP) neuroendocrine carcinomas (NEC): a critical view. Cancer Treat Rev 2013; 39: 270-274
  • 449 Sorbye H. et al. Gastroenteropancreatic high-grade neuroendocrine carcinoma. Cancer 2014; 120: 2814-2823
  • 450 Yamaguchi T. et al. Multicenter retrospective analysis of systemic chemotherapy for advanced neuroendocrine carcinoma of the digestive system. Cancer Sci 2014; 105: 1176-1181
  • 451 Vélayoudom-Céphise FL. et al. Are G3 ENETS neuroendocrine neoplasms heterogeneous?. Endocr Relat Cancer 2013; 20: 649-657
  • 452 Basturk O. et al. The high-grade (WHO G3) pancreatic neuroendocrine tumor category is morphologically and biologically heterogenous and includes both well differenziated and poorly differenziated neoplasms. Am J Surg Pathol 2015; 39: 683-690
  • 453 Heetfeld M. et al. Characteristics and treatment of patients with G3 gastroenteropancreatic neuroendocrine neoplasms. Endocr Relat Cancer 2015; 22: 657-664
  • 454 Panzuto F. et al. Everolimus in Pancreatic Neuroendocrine Carcinomas G3. Pancreas 2017; 46: 302-305
  • 455 Thang SP. et al. Peptide receptor radionuclide therapy (PRRT) in European Neuroendocrine Tumour Society (ENETS) grade 3 (G3) neuroendocrine neoplasia (NEN) – a single-institution retrospective analysis. Eur J Nucl Med Mol Imaging 2018; 45: 262-277
  • 456 Rinke A, Gress TM. Neuroendocrine Cancer, Therapeutic Strategies in G3 Cancers. Digestion 2017; 95: 109-114
  • 457 Pavlidis N, Pentheroudakis G. Cancer of unknown primary site. Lancet 2012; 379: 1428-1435
  • 458 Reu S, Neumann J, Kirchner T. [Gastrointestinal mixed adenoneuroendocrine carcinomas. An attempt at classification of mixed cancers]. Pathologe 2012; 33: 31-38
  • 459 Hentic O. et al. FOLFIRI regimen: an effective second-line chemotherapy after failure of etoposide-platinum combination in patients with neuroendocrine carcinomas grade 3. Endocr Relat Cancer 2012; 19: 751-757
  • 460 Hadoux J. et al. Post-first-line FOLFOX chemotherapy for grade 3 neuroendocrine carcinoma. Endocr Relat Cancer 2015; 22: 289-298
  • 461 Welin S. et al. Clinical effect of temozolomide-based chemotherapy in poorly differenziated endocrine carcinoma after progression on first-line chemotherapy. Cancer 2011; 117: 4617-4622
  • 462 Kalemkerian GP. et al. Small cell lung cancer. J Natl Compr Canc Netw 2013; 11: 78-98
  • 463 Olsen IH. et al. Topotecan monotherapy in heavily pretreated patients with progressive advanced stage neuroendocrine carcinomas. J Cancer 2014; 5: 628-632
  • 464 Apostolidis L. et al. Efficacy of topotecan in pretreated metastatic poorly differenziated extrapulmonary neuroendocrine carcinoma. Cancer Med 2016; 5: 2261-2267
  • 465 Han JY. et al. A phase II study of sunitinib in patients with relapsed or refractory small cell lung cancer. Lung Cancer 2013; 79: 137-142
  • 466 Spigel DR. et al. Phase II study of maintenance sunitinib following irinotecan and carboplatin as first-line treatment for patients with extensive-stage small-cell lung cancer. Lung Cancer 2012; 77: 359-364
  • 467 Ready NE. et al. Chemotherapy With or Without Maintenance Sunitinib for Untreated Extensive-Stage Small-Cell Lung Cancer: A Randomized, Double-Blind, Placebo-Controlled Phase II Study-CALGB 30504 (Alliance). J Clin Oncol 2015; 33: 1660-1665
  • 468 Bollard J. et al. Antitumor effect of everolimus in preclinical models of high-grade gastroenteropancreatic neuroendocrine carcinomas. Neuroendocrinology 2013; 97: 331-340
  • 469 Catena L. et al. Mammalian target of rapamycin expression in poorly differenziated endocrine carcinoma: clinical and therapeutic future challenges. Target Oncol 2011; 6: 65-68
  • 470 Tarhini A. et al. Phase II study of everolimus (RAD001) in previously treated small cell lung cancer. Clin Cancer Res 2010; 16: 5900-5907
  • 471 Besse B. et al. A phase Ib dose-escalation study of everolimus combined with cisplatin and etoposide as first-line therapy in patients with extensive-stage small-cell lung cancer. Ann Oncol 2014; 25: 505-511
  • 472 Sun JM. et al. A phase-1b study of everolimus plus paclitaxel in patients with small-cell lung cancer. Br J Cancer 2013; 109: 1482-1487
  • 473 Eberhardt WE. et al. Feasibility of adding everolimus to carboplatin and paclitaxel, with or without bevacizumab, for treatment-naive, advanced non-small cell lung cancer. Invest New Drugs 2014; 32: 123-134
  • 474 Gilabert M, Rho YS, Kavan P. Targeted Therapies Provide Treatment Options for Poorly Differenziated Pancreatic Neuroendocrine Carcinomas. Oncology 2017; 92: 170-172
  • 475 Fonseca PJ. et al. Prolonged clinical benefit of everolimus therapy in the management of high-grade pancreatic neuroendocrine carcinoma. Case Rep Oncol 2013; 6: 441-449
  • 476 McConnell YJ. et al. Cytoreductive surgery with hyperthermic intraperitoneal chemotherapy: an emerging treatment option for advanced goblet cell tumors of the appendix. Ann Surg Oncol 2014; 21: 1975-1982
  • 477 Randle RW. et al. Appendiceal goblet cell carcinomatosis treated with cytoreductive surgery and hyperthermic intraperitoneal chemotherapy. J Surg Res 2015; 196: 229-234
  • 478 Olsen IH. et al. Goblet cell carcinoids: characteristics of a Danish cohort of 83 patients. PLoS One 2015; 10: e0117627
  • 479 Dieckhoff P. et al. Well-differenziated neuroendocrine neoplasia: relapse-free survival and predictors of recurrence after curative intended resections. Digestion 2014; 90: 89-97
  • 480 Zagar TM. et al. Resected pancreatic neuroendocrine tumors: patterns of failure and disease-related outcomes with or without radiotherapy. Int J Radiat Oncol Biol Phys 2012; 83: 1126-1131
  • 481 Maire F. et al. Is adjuvant therapy with streptozotocin and 5-fluorouracil useful after resection of liver metastases from digestive endocrine tumors?. Surgery 2009; 145: 69-75
  • 482 Brenner B. et al. Small cell carcinomas of the gastrointestinal tract: clinicopathological features and treatment approach. Semin Oncol 2007; 34: 43-50
  • 483 Pignon JP. et al. A meta-analysis of thoracic radiotherapy for small-cell lung cancer. N Engl J Med 1992; 327: 1618-1624
  • 484 Takada M. et al. Phase III study of concurrent versus sequential thoracic radiotherapy in combination with cisplatin and etoposide for limited-stage small-cell lung cancer: results of the Japan Clinical Oncology Group Study 9104. J Clin Oncol 2002; 20: 3054-3060
  • 485 Rai U. et al. Therapeutic uses of somatostatin and its analogues: Current view and potenzial applications. Pharmacol Ther 2015; 152: 98-110
  • 486 Kvols LK. et al. Treatment of the malignant carcinoid syndrome. Evaluation of a long-acting somatostatin analogue. N Engl J Med 1986; 315: 663-666
  • 487 Khan MS. et al. Long-term results of treatment of malignant carcinoid syndrome with prolonged release Lanreotide (Somatuline Autogel). Aliment Pharmacol Ther 2011; 34: 235-242
  • 488 O’Toole D. et al. Treatment of carcinoid syndrome: a prospective crossover evaluation of lanreotide versus octreotide in terms of efficacy, patient acceptability, and tolerance. Cancer 2000; 88: 770-776
  • 489 Pavel M. et al. ENETS Consensus Guidelines for the Standards of Care in Neuroendocrine Neoplasms: Systemic Therapy – Biotherapy and Novel Targeted Agents. Neuroendocrinology 2017; 105: 266-280
  • 490 Strosberg JR. et al. Clinical benefits of above-standard dose of octreotide LAR in patients with neuroendocrine tumors for control of carcinoid syndrome symptoms: a multicenter retrospective chart review study. Oncologist 2014; 19: 930-936
  • 491 Broder MS. et al. Gastrointestinal neuroendocrine tumors treated with high dose octreotide-LAR: a systematic literature review. World J Gastroenterol 2015; 21: 1945-1955
  • 492 Welin SV. et al. High-dose treatment with a long-acting somatostatin analogue in patients with advanced midgut carcinoid tumours. Eur J Endocrinol 2004; 151: 107-112
  • 493 Woltering EA. et al. Effect of octreotide LAR dose and weight on octreotide blood levels in patients with neuroendocrine tumors. Pancreas 2005; 31: 392-400
  • 494 Ferolla P. et al. Shortened interval of long-acting octreotide administration is effective in patients with well-differenziated neuroendocrine carcinomas in progression on standard doses. J Endocrinol Invest 2012; 35: 326-331
  • 495 Mirvis E. et al. Role of interferon-alpha in patients with neuroendocrine tumors: a retrospective study. Anticancer Res 2014; 34: 6601-6607
  • 496 Oberg K. Interferon in the management of neuroendocrine GEP-tumors: a review. Digestion 2000; 62 (Suppl. 01) 92-97
  • 497 Biesma B. et al. Recombinant interferon alpha-2b in patients with metastatic apudomas: effect on tumours and tumour markers. Br J Cancer 1992; 66: 850-855
  • 498 Oberg K. et al. ENETS Consensus Guidelines for the Standards of Care in Neuroendocrine Tumors: biotherapy. Neuroendocrinology 2009; 90: 209-213
  • 499 O’Toole D, Maire F, Ruszniewski P. Ablative therapies for liver metastases of digestive endocrine tumours. Endocr Relat Cancer 2003; 10: 463-468
  • 500 Vyleta M, Coldwell D. Radioembolization in the treatment of neuroendocrine tumor metastases to the liver. Int J Hepatol 2011; 2011: 785315
  • 501 Ahlman H, Scherstén T, Tisell LE. Surgical treatment of patients with the carcinoid syndrome. Acta Oncol 1989; 28: 403-407
  • 502 Gulec SA. et al. Cytoreductive surgery in patients with advanced-stage carcinoid tumors. Am Surg 2002; 68: 667-671 discussion 671–672
  • 503 Valkema R. et al. Survival and response after peptide receptor radionuclide therapy with [90Y-DOTA0, Tyr3]octreotide in patients with advanced gastroenteropancreatic neuroendocrine tumors. Semin Nucl Med 2006; 36: 147-156
  • 504 Bushnell Jr DL. et al. 90Y-edotreotide for metastatic carcinoid refractory to octreotide. J Clin Oncol 2010; 28: 1652-1659
  • 505 Pavel M. et al. Telotristat etiprate for carcinoid syndrome: a single-arm, multicenter trial. J Clin Endocrinol Metab 2015; 100: 1511-1519
  • 506 Kulke MH. et al. Telotristat etiprate, a novel serotonin synthesis inhibitor, in patients with carcinoid syndrome and diarrhea not adequately controlled by octreotide. Endocr Relat Cancer 2014; 21: 705-714
  • 507 Kulke MH. et al. Telotristat Ethyl, a Tryptophan Hydroxylase Inhibitor for the Treatment of Carcinoid Syndrome. J Clin Oncol 2017; 35: 14-23
  • 508 Maiza JC. et al. Treatment with somatostatin analogs and chemoembolization of liver metastases for severe hypoglycemia in malignant insulinomas. J Endocrinol Invest 2011; 34: e253-e258
  • 509 Gill GV, Rauf O, MacFarlane IA. Diazoxide treatment for insulinoma: a national UK survey. Postgrad Med J 1997; 73: 640-641
  • 510 Portela-Gomes GM. et al. Differenzial expression of the five somatostatin receptor subtypes in human benign and malignant insulinomas – predominance of receptor subtype 4. Endocr Pathol 2007; 18: 79-85
  • 511 Romeo S. et al. Complete clinical remission and disappearance of liver metastases after treatment with somatostatin analogue in a 40-year-old woman with a malignant insulinoma positive for somatostatin receptors type 2. Horm Res 2006; 65: 120-125
  • 512 Ricci S. et al. Long-acting depot lanreotide in the treatment of patients with advanced neuroendocrine tumors. Am J Clin Oncol 2000; 23: 412-415
  • 513 Aparicio T. et al. Antitumour activity of somatostatin analogues in progressive metastatic neuroendocrine tumours. Eur J Cancer 2001; 37: 1014-1019
  • 514 Fiebrich HB. et al. Everolimus induces rapid plasma glucose normalization in insulinoma patients by effects on tumor as well as normal tissues. Oncologist 2011; 16: 783-787
  • 515 Ong GS. et al. Therapies for the medical management of persistent hypoglycaemia in two cases of inoperable malignant insulinoma. Eur J Endocrinol 2010; 162: 1001-1008
  • 516 Bernard V. et al. Efficacy of everolimus in patients with metastatic insulinoma and refractory hypoglycemia. Eur J Endocrinol 2013; 168: 665-674
  • 517 Epelboym I, Mazeh H. Zollinger-Ellison syndrome: classical considerations and current controversies. Oncologist 2014; 19: 44-50
  • 518 Ito T. et al. Pharmacotherapy of Zollinger-Ellison syndrome. Expert Opin Pharmacother 2013; 14: 307-321
  • 519 Jensen RT, Fraker DL. Zollinger-Ellison syndrome. Advances in treatment of gastric hypersecretion and the gastrinoma. JAMA 1994; 271: 1429-1435
  • 520 Metz DC. et al. Control of gastric acid hypersecretion in the management of patients with Zollinger-Ellison syndrome. World J Surg 1993; 17: 468-480
  • 521 Maton PN. et al. Long-term efficacy and safety of omeprazole in patients with Zollinger-Ellison syndrome: a prospective study. Gastroenterology 1989; 97: 827-836
  • 522 Hirschowitz BI, Simmons J, Mohnen J. Clinical outcome using lansoprazole in acid hypersecretors with and without Zollinger-Ellison syndrome: a 13-year prospective study. Clin Gastroenterol Hepatol 2005; 3: 39-48
  • 523 Gibril F, Jensen RT. Zollinger-Ellison syndrome revisited: diagnosis, biologic markers, associated inherited disorders, and acid hypersecretion. Curr Gastroenterol Rep 2004; 6: 454-463
  • 524 Jensen RT. et al. Gastrinoma (duodenal and pancreatic). Neuroendocrinology 2006; 84: 173-182
  • 525 Osefo N, Ito T, Jensen RT. Gastric acid hypersecretory states: recent insights and advances. Curr Gastroenterol Rep 2009; 11: 433-441
  • 526 Nieto JM, Pisegna JR. The role of proton pump inhibitors in the treatment of Zollinger-Ellison syndrome. Expert Opin Pharmacother 2006; 7: 169-175
  • 527 Auernhammer CJ, Göke B. Medical treatment of gastrinomas. Wien Klin Wochenschr 2007; 119: 609-615
  • 528 Wilcox CM, Hirschowitz BI. Treatment strategies for Zollinger-Ellison syndrome. Expert Opin Pharmacother 2009; 10: 1145-1157
  • 529 Metz DC. et al. Effects of esomeprazole on acid output in patients with Zollinger-Ellison syndrome or idiopathic gastric acid hypersecretion. Am J Gastroenterol 2007; 102: 2648-2654
  • 530 Grozinsky-Glasberg S. et al. Somatostatin analogues in the control of neuroendocrine tumours: efficacy and mechanisms. Endocr Relat Cancer 2008; 15: 701-720
  • 531 Krejs GJ. VIPoma syndrome. Am J Med 1987; 82: 37-48
  • 532 Metz DC, Jensen RT. Gastrointestinal neuroendocrine tumors: pancreatic endocrine tumors. Gastroenterology 2008; 135: 1469-1492
  • 533 O’Toole D. et al. Rare functioning pancreatic endocrine tumors. Neuroendocrinology 2006; 84: 189-195
  • 534 Mathur A, Gorden P, Libutti SK. Insulinoma. Surg Clin North Am 2009; 89: 1105-1121
  • 535 Grier JF. WDHA (watery diarrhea, hypokalemia, achlorhydria) syndrome: clinical features, diagnosis, and treatment. South Med J 1995; 88: 22-24
  • 536 Kraenzlin ME. et al. Long-term treatment of a VIPoma with somatostatin analogue resulting in remission of symptoms and possible shrinkage of metastases. Gastroenterology 1985; 88: 185-187
  • 537 van Beek AP. et al. The glucagonoma syndrome and necrolytic migratory erythema: a clinical review. Eur J Endocrinol 2004; 151: 531-537
  • 538 Mountjoy L, Kollmorgen D. Glucagonoma-Associated Rash. N Engl J Med 2017; 376: e18
  • 539 Norton JA. et al. Amino acid deficiency and the skin rash associated with glucagonoma. Ann Intern Med 1979; 91: 213-215
  • 540 Wermers RA. et al. The glucagonoma syndrome. Clinical and pathologic features in 21 patients. Medicine (Baltimore) 1996; 75: 53-63
  • 541 Rosenbaum A. et al. Octreotide (SMS 201-995) in the treatment of metastatic glucagonoma: report of one case and review of the literature. Digestion 1989; 42: 116-120
  • 542 Boden G. et al. Treatment of inoperable glucagonoma with the long-acting somatostatin analogue SMS 201-995. N Engl J Med 1986; 314: 1686-1689
  • 543 Schmid R. et al. Effect of somatostatin on skin lesions and concentrations of plasma amino acids in a patient with glucagonoma-syndrome. Hepatogastroenterology 1988; 35: 34-37
  • 544 Anderson JV, Bloom SR. Neuroendocrine tumours of the gut: long-term therapy with the somatostatin analogue SMS 201-995. Scand J Gastroenterol Suppl 1986; 119: 115-128
  • 545 Kindmark H. et al. Endocrine pancreatic tumors with glucagon hypersecretion: a retrospective study of 23 cases during 20 years. Med Oncol 2007; 24: 330-337
  • 546 Dimitriadis GK. et al. Medical management of secretory syndromes related to gastroenteropancreatic neuroendocrine tumours. Endocr Relat Cancer 2016; 23: R423-R436
  • 547 Kaltsas G. et al. ENETS Consensus Guidelines for the Standards of Care in Neuroendocrine Tumors: Pre- and Perioperative Therapy in Patients with Neuroendocrine Tumors. Neuroendocrinology 2017; 105: 245-254
  • 548 Kos-Kudla B. et al. ENETS consensus guidelines for the management of bone and lung metastases from neuroendocrine tumors. Neuroendocrinology 2010; 91: 341-350
  • 549 Van Loon K. et al. Bone metastases and skeletal-related events from neuroendocrine tumors. Endocr Connect 2015; 4: 9-17
  • 550 Scharf M. et al. Bone Metastases in NEN Patients. Neuroendocrinology 2018; 106: 30-37
  • 551 Coleman R. et al. Bone health in cancer patients: ESMO Clinical Practice Guidelines. Ann Oncol 2014; 25 (Suppl. 03) iii124-iii137
  • 552 Makis W. et al. Liver and bone metastases from small bowel neuroendocrine tumor respond to 177Lu-DOTATATE induction and maintenance therapies. Clin Nucl Med 2015; 40: 162-165
  • 553 Sabet A. et al. Can peptide receptor radionuclide therapy be safely applied in florid bone metastases? A pilot analysis of late stage osseous involvement. Nuklearmedizin 2014; 53: 54-59
  • 554 Rinke A. et al. Placebo-controlled, double-blind, prospective, randomized study on the effect of octreotide LAR in the control of tumor growth in patients with metastatic neuroendocrine midgut tumors: a report from the PROMID Study Group. J Clin Oncol 2009; 27: 4656-4663
  • 555 van der Zwan WA. et al. GEPNETs update: Radionuclide therapy in neuroendocrine tumors. Eur J Endocrinol 2015; 172: R1-R8
  • 556 Haug AR. et al. 68Ga-DOTATATE PET/CT for the early prediction of response to somatostatin receptor-mediated radionuclide therapy in patients with well-differenziated neuroendocrine tumors. J Nucl Med 2010; 51: 1349-1356
  • 557 Khan S. et al. Quality of life in 265 patients with gastroenteropancreatic or bronchial neuroendocrine tumors treated with [177Lu-DOTA0, Tyr3]octreotate. J Nucl Med 2011; 52: 1361-1368
  • 558 Kennedy A. et al. Role of hepatic intra-arterial therapies in metastatic neuroendocrine tumours (NET): guidelines from the NET-Liver-Metastases Consensus Conference. HPB (Oxford) 2015; 17: 29-37
  • 559 Bodei L. et al. Long-term evaluation of renal toxicity after peptide receptor radionuclide therapy with 90Y-DOTATOC and 177Lu-DOTATATE: the role of associated risk factors. Eur J Nucl Med Mol Imaging 2008; 35: 1847-1856
  • 560 Valkema R. et al. Long-term follow-up of renal function after peptide receptor radiation therapy with (90)Y-DOTA(0), Tyr(3)-octreotide and (177)Lu-DOTA(0), Tyr(3)-octreotate. J Nucl Med 2005; 46 (Suppl. 01) 83S-91S
  • 561 Kwekkeboom DJ. et al. Overview of results of peptide receptor radionuclide therapy with 3 radiolabeled somatostatin analogs. J Nucl Med 2005; 46 (Suppl. 01) 62S-66S
  • 562 Brabander T. et al. Long-Term Efficacy, Survival, and Safety of [177Lu-DOTA0, Tyr3]octreotate in Patients with Gastroenteropancreatic and Bronchial Neuroendocrine Tumors. Clin Cancer Res 2017; 23: 4617-4624
  • 563 Bodei L. et al. Long-term tolerability of PRRT in 807 patients with neuroendocrine tumours: the value and limitations of clinical factors. Eur J Nucl Med Mol Imaging 2015; 42: 5-19
  • 564 Memon K. et al. Radioembolization for neuroendocrine liver metastases: safety, imaging, and long-term outcomes. Int J Radiat Oncol Biol Phys 2012; 83: 887-894
  • 565 Rhee TK. et al. 90Y Radioembolization for metastatic neuroendocrine liver tumors: preliminary results from a multi-institutional experience. Ann Surg 2008; 247: 1029-1035
  • 566 Ezziddin S. et al. 90Y Radioembolization after radiation exposure from peptide receptor radionuclide therapy. J Nucl Med 2012; 53: 1663-1669
  • 567 Cwikla JB. et al. Efficacy of radionuclide treatment DOTATATE Y-90 in patients with progressive metastatic gastroenteropancreatic neuroendocrine carcinomas (GEP-NETs): a phase II study. Ann Oncol 2010; 21: 787-794
  • 568 Hicks RJ. et al. ENETS Consensus Guidelines for the Standards of Care in Neuroendocrine Neoplasia: Peptide Receptor Radionuclide Therapy with Radiolabeled Somatostatin Analogues. Neuroendocrinology 2017; 105: 295-309
  • 569 Bodei L. et al. The joint IAEA, EANM, and SNMMI practical guidance on peptide receptor radionuclide therapy (PRRNT) in neuroendocrine tumours. Eur J Nucl Med Mol Imaging 2013; 40: 800-816
  • 570 Poeppel TD. et al. [Peptide receptor radionuclide therapy for patients with somatostatin receptor expressing tumours. German Guideline (S1)]. Nuklearmedizin 2015; 54: 1-11 quiz N2.
  • 571 Lutz S. et al. Palliative radiotherapy for bone metastases: an ASTRO evidence-based guideline. Int J Radiat Oncol Biol Phys 2011; 79: 965-976
  • 572 Kayani I. et al. Functional imaging of neuroendocrine tumors with combined PET/CT using 68Ga-DOTATATE (DOTA-DPhe1, Tyr3-octreotate) and 18F-FDG. Cancer 2008; 112: 2447-2455
  • 573 Reubi JC, Waser B. Concomitant expression of several peptide receptors in neuroendocrine tumours: molecular basis for in vivo multireceptor tumour targeting. Eur J Nucl Med Mol Imaging 2003; 30: 781-793
  • 574 Kaemmerer D. et al. Molecular imaging with (6)(8)Ga-SSTR PET/CT and correlation to immunohistochemistry of somatostatin receptors in neuroendocrine tumours. Eur J Nucl Med Mol Imaging 2011; 38: 1659-1668
  • 575 van Adrichem RC. et al. Is There an Additional Value of Using Somatostatin Receptor Subtype 2a Immunohistochemistry Compared to Somatostatin Receptor Scintigraphy Uptake in Predicting Gastroenteropancreatic Neuroendocrine Tumor Response?. Neuroendocrinology 2015; 103: 560-566
  • 576 Kulkarni HR, Baum RP. Patient selection for personalized peptide receptor radionuclide therapy using Ga-68 somatostatin receptor PET/CT. PET Clin 2014; 9: 83-90
  • 577 Kwekkeboom DJ. et al. Radiolabeled somatostatin analog [177Lu-DOTA0, Tyr3]octreotate in patients with endocrine gastroenteropancreatic tumors. J Clin Oncol 2005; 23: 2754-2762
  • 578 Öksüz MO. et al. Peptide receptor radionuclide therapy of neuroendocrine tumors with (90)Y-DOTATOC: is treatment response predictable by pre-therapeutic uptake of (68)Ga-DOTATOC?. Diagn Interv Imaging 2014; 95: 289-300
  • 579 Bahri H. et al. High prognostic value of 18F-FDG PET for metastatic gastroenteropancreatic neuroendocrine tumors: a long-term evaluation. J Nucl Med 2014; 55: 1786-1790
  • 580 Ezziddin S. et al. Prognostic stratification of metastatic gastroenteropancreatic neuroendocrine neoplasms by 18F-FDG PET: feasibility of a metabolic grading system. J Nucl Med 2014; 55: 1260-1266
  • 581 Severi S. et al. Role of 18FDG PET/CT in patients treated with 177Lu-DOTATATE for advanced differenziated neuroendocrine tumours. Eur J Nucl Med Mol Imaging 2013; 40: 881-888
  • 582 Romer A. et al. Somatostatin-based radiopeptide therapy with [177Lu-DOTA]-TOC versus [90Y-DOTA]-TOC in neuroendocrine tumours. Eur J Nucl Med Mol Imaging 2014; 41: 214-222
  • 583 Bodei L. et al. Peptide receptor therapies in neuroendocrine tumors. J Endocrinol Invest 2009; 32: 360-369
  • 584 Bomanji JB, Papathanasiou ND. (1)(1)(1)In-DTPA(0)-octreotide (Octreoscan), (1)(3)(1)I-MIBG and other agents for radionuclide therapy of NETs. Eur J Nucl Med Mol Imaging 2012; 39 (Suppl. 01) S113-S125
  • 585 Grunwald F, Ezziddin S. 131I-metaiodobenzylguanidine therapy of neuroblastoma and other neuroendocrine tumors. Semin Nucl Med 2010; 40: 153-163
  • 586 Khan MU, Morse M, Coleman RE. Radioiodinated metaiodobenzylguanidine in the diagnosis and therapy of carcinoid tumors. Q J Nucl Med Mol Imaging 2008; 52: 441-454
  • 587 Safford SD. et al. Iodine-131 metaiodobenzylguanidine treatment for metastatic carcinoid. Results in 98 patients. Cancer 2004; 101: 1987-1993
  • 588 Bushnell DL. et al. Feasibility and advantage of adding (131)I-MIBG to (90)Y-DOTATOC for treatment of patients with advanced stage neuroendocrine tumors. EJNMMI Res 2014; 4: 38
  • 589 Buchmann I. et al. Comparison of 68Ga-DOTATOC PET and 111In-DTPAOC (Octreoscan) SPECT in patients with neuroendocrine tumours. Eur J Nucl Med Mol Imaging 2007; 34: 1617-1626
  • 590 Ruf J. et al. Impact of Multiphase 68Ga-DOTATOC-PET/CT on therapy management in patients with neuroendocrine tumors. Neuroendocrinology 2010; 91: 101-109
  • 591 Deppen SA. et al. Safety and Efficacy of 68Ga-DOTATATE PET/CT for Diagnosis, Staging, and Treatment Management of Neuroendocrine Tumors. J Nucl Med 2016; 57: 708-714
  • 592 Virgolini I. et al. Procedure guidelines for PET/CT tumour imaging with 68Ga-DOTA-conjugated peptides: 68Ga-DOTA-TOC, 68Ga-DOTA-NOC, 68Ga-DOTA-TATE. Eur J Nucl Med Mol Imaging 2010; 37: 2004-2010
  • 593 Armbruster M. et al. Diagnostic accuracy of dynamic gadoxetic-acid-enhanced MRI and PET/CT compared in patients with liver metastases from neuroendocrine neoplasms. J Magn Reson Imaging 2014; 40: 457-466
  • 594 Schraml C. et al. Staging of neuroendocrine tumours: comparison of [(6)(8)Ga]DOTATOC multiphase PET/CT and whole-body MRI. Cancer Imaging 2013; 13: 63-72
  • 595 Sansovini M. et al. Treatment with the radiolabelled somatostatin analog Lu-DOTATATE for advanced pancreatic neuroendocrine tumors. Neuroendocrinology 2013; 97: 347-354
  • 596 Ezziddin S. et al. Outcome of peptide receptor radionuclide therapy with 177Lu-octreotate in advanced grade 1/2 pancreatic neuroendocrine tumours. Eur J Nucl Med Mol Imaging 2014; 41: 925-933
  • 597 Ramanathan RK. et al. Phase II trial of dacarbazine (DTIC) in advanced pancreatic islet cell carcinoma. Study of the Eastern Cooperative Oncology Group-E6282. Ann Oncol 2001; 12: 1139-1143
  • 598 Horsch D. et al. Effectiveness and side-effects of peptide receptor radionuclide therapy for neuroendocrine neoplasms in Germany: A multi-institutional registry study with prospective follow-up. Eur J Cancer 2016; 58: 41-51
  • 599 Fazio N, Milione M. Heterogeneity of grade 3 gastroenteropancreatic neuroendocrine carcinomas: New insights and treatment implications. Cancer Treat Rev 2016; 50: 61-67
  • 600 Montanier N. et al. The prognostic influence of the proliferative discordance in metastatic pancreatic neuroendocrine carcinoma revealed by peptide receptor radionuclide therapy: Case report and review of literature. Medicine (Baltimore) 2017; 96: e6062
  • 601 Kong G. et al. Assessment of predictors of response and long-term survival of patients with neuroendocrine tumour treated with peptide receptor chemoradionuclide therapy (PRCRT). Eur J Nucl Med Mol Imaging 2014; 41: 1831-1844
  • 602 Oh S. et al. Effect of Peptide Receptor Radionuclide Therapy on Somatostatin Receptor Status and Glucose Metabolism in Neuroendocrine Tumors: Intraindividual Comparison of Ga-68 DOTANOC PET/CT and F-18 FDG PET/CT. Int J Mol Imaging 2011; 524130
  • 603 Chan DL. et al. Dual somatostatin receptor/FDG PET/CT imaging in metastatic neuroendocrine tumors: Proposal for a novelgrading scheme with prognostic significance. Theranostics 2017; 7: 1149-1158
  • 604 Ezziddin S. et al. Impact of the Ki-67 proliferation index on response to peptide receptor radionuclide therapy. Eur J Nucl Med Mol Imaging 2011; 38: 459-466
  • 605 Green S, Weiss GR. Southwest Oncology Group standard response criteria, endpoint definitions and toxicity criteria. Invest New Drugs 1992; 10: 239-253
  • 606 Rossi S. et al. Radiofrequency ablation of pancreatic neuroendocrine tumors: a pilot study of feasibility, efficacy, and safety. Pancreas 2014; 43: 938-945
  • 607 Mohan H. et al. Radiofrequency ablation for neuroendocrine liver metastases: a systematic review. J Vasc Interv Radiol 2015; 26: 935-942 .e1.
  • 608 Akyildiz HY. et al. Laparoscopic radiofrequency thermal ablation of neuroendocrine hepatic metastases: long-term follow-up. Surgery 2010; 148: 1288-1293 discussion 1293.
  • 609 Wessels FJ, Schell SR. Radiofrequency ablation treatment of refractory carcinoid hepatic metastases. J Surg Res 2001; 95: 8-12
  • 610 Greten TF. et al. Diagnosis of and therapy for hepatocellular carcinoma. Z Gastroenterol 2013; 51: 1269-1326
  • 611 de Baere T. et al. GEP-NETS update: Interventional radiology: role in the treatment of liver metastases from GEP-NETs. Eur J Endocrinol 2015; 172: R151-R166
  • 612 Perala J. et al. MRI-guided laser ablation of neuroendocrine tumor hepatic metastases. Acta Radiol Short Rep 2014; 3: 2047981613499753
  • 613 Groeschl RT. et al. Microwave ablation for hepatic malignancies: a multiinstitutional analysis. Ann Surg 2014; 259: 1195-1200
  • 614 Huo YR, Eslick GD. Microwave Ablation Compared to Radiofrequency Ablation for Hepatic Lesions: A Meta-Analysis. J Vasc Interv Radiol 2015; 26: 1139-1146 e2.
  • 615 Niessen C. et al. Percutaneous Ablation of Hepatic Tumors Using Irreversible Electroporation: A Prospective Safety and Midterm Efficacy Study in 34 Patients. J Vasc Interv Radiol 2016; 27: 480-486
  • 616 Schippers AC. et al. Initial Experience with CT-Guided High-Dose-Rate Brachytherapy in the Multimodality Treatment of Neuroendocrine Tumor Liver Metastases. J Vasc Interv Radiol 2017; 28: 672-682
  • 617 Bertot LC. et al. Mortality and complication rates of percutaneous ablative techniques for the treatment of liver tumors: a systematic review. Eur Radiol 2011; 21: 2584-2596
  • 618 Correa-Gallego C. et al. A retrospective comparison of microwave ablation vs. radiofrequency ablation for colorectal cancer hepatic metastases. Ann Surg Oncol 2014; 21: 4278-4283
  • 619 Ding J. et al. Comparison of two differenz thermal techniques for the treatment of hepatocellular carcinoma. Eur J Radiol 2013; 82: 1379-1384
  • 620 Scheffer HJ. et al. Irreversible electroporation for nonthermal tumor ablation in the clinical setting: a systematic review of safety and efficacy. J Vasc Interv Radiol 2014; 25: 997-1011 quiz 1011.
  • 621 Choi D. et al. Liver abscess after percutaneous radiofrequency ablation for hepatocellular carcinomas: frequency and risk factors. Am J Roentgenol 2005; 184: 1860-1867
  • 622 Elias D. et al. Liver abscess after radiofrequency ablation of tumors in patients with a biliary tract procedure. Gastroenterol Clin Biol 2006; 30: 823-827
  • 623 Hama Y, Kusano S. Liver abscess formation after hepatic chemoembolization for metastatic pancreatic neuroendocrine tumor. Minim Invasive Ther Allied Technol 2005; 14: 6-7
  • 624 Huang SF. et al. Liver abscess formation after transarterial chemoembolization for malignant hepatic tumor. Hepatogastroenterology 2003; 50: 1115-1118
  • 625 Kim W. et al. Risk factors for liver abscess formation after hepatic chemoembolization. J Vasc Interv Radiol 2001; 12: 965-968
  • 626 Okajima K. et al. Bilio-enteric anastomosis as a risk factor for postembolic hepatic abscesses. Cardiovasc Intervent Radiol 1989; 12: 128-130
  • 627 Ong GY. et al. Liver abscess complicating transcatheter arterial embolization: a rare but serious complication. A retrospective study after 3878 procedures. Eur J Gastroenterol Hepatol 2004; 16: 737-742
  • 628 Sakamoto I. et al. Intrahepatic biloma formation (bile duct necrosis) after transcatheter arterial chemoembolization. Am J Roentgenol 2003; 181: 79-87
  • 629 Shibata T. et al. Cholangitis and liver abscess after percutaneous ablation therapy for liver tumors: incidence and risk factors. J Vasc Interv Radiol 2003; 14: 1535-1542
  • 630 Cholapranee A. et al. Risk of liver abscess formation in patients with prior biliary intervention following yttrium-90 radioembolization. Cardiovasc Intervent Radiol 2015; 38: 397-400
  • 631 Geisel D. et al. No infectious hepatic complications following radioembolization with 90Y microspheres in patients with biliodigestive anastomosis. Anticancer Res 2014; 34: 4315-4321
  • 632 De Jong MC. et al. Liver-directed therapy for hepatic metastases in patients undergoing pancreaticoduodenectomy: a dual-center analysis. Ann Surg 2010; 252: 142-148
  • 633 Del Prete M. et al. Hepatic arterial embolization in patients with neuroendocrine tumors. J Exp Clin Cancer Res 2014; 33: 43
  • 634 Dong XD, Carr BI. Hepatic artery chemoembolization for the treatment of liver metastases from neuroendocrine tumors: a long-term follow-up in 123 patients. Med Oncol 2011; 28 (Suppl. 01) S286-S290
  • 635 Bloomston M. et al. Hepatic artery chemoembolization in 122 patients with metastatic carcinoid tumor: lessons learned. J Gastrointest Surg 2007; 11: 264-271
  • 636 Nazario J, Gupta S. Transarterial liver-directed therapies of neuroendocrine hepatic metastases. Semin Oncol 2010; 37: 118-126
  • 637 Mallory GW. et al. Brain carcinoid metastases: outcomes and prognostic factors. J Neurosurg 2013; 118: 889-895
  • 638 Ruutiainen AT. et al. Chemoembolization and bland embolization of neuroendocrine tumor metastases to the liver. J Vasc Interv Radiol 2007; 18: 847-855
  • 639 Fiore F. et al. Transarterial embolization (TAE) is equally effective and slightly safer than transarterial chemoembolization (TACE) to manage liver metastases in neuroendocrine tumors. Endocrine 2014; 47: 177-182
  • 640 Pitt SC. et al. Hepatic neuroendocrine metastases: chemo- or bland embolization?. J Gastrointest Surg 2008; 12: 1951-1960
  • 641 Maire F. et al. Hepatic arterial embolization versus chemoembolization in the treatment of liver metastases from well-differenziated midgut endocrine tumors: a prospective randomized study. Neuroendocrinology 2012; 96: 294-300
  • 642 Chen JX. et al. Embolotherapy for Neuroendocrine Tumor Liver Metastases: Prognostic Factors for Hepatic Progression-Free Survival and Overall Survival. Cardiovasc Intervent Radiol 2017; 40: 69-80
  • 643 Guiu B. et al. Liver/biliary injuries following chemoembolisation of endocrine tumours and hepatocellular carcinoma: lipiodol vs. drug-eluting beads. J Hepatol 2012; 56: 609-617
  • 644 Bhagat N. et al. Phase II study of chemoembolization with drug-eluting beads in patients with hepatic neuroendocrine metastases: high incidence of biliary injury. Cardiovasc Intervent Radiol 2013; 36: 449-459
  • 645 Wong CY. et al. Regional yttrium-90 microsphere treatment of surgically unresectable and chemotherapy-refractory metastatic liver carcinoma. Cancer Biother Radiopharm 2006; 21: 305-313
  • 646 Lam MG. et al. Comparison between resin and glass microspheres for Yttrium-90 radioembolization treatment of hepatocellular carcinoma. Journal of Vascular and Interventional Radiology 2013; 24: 149
  • 647 Smits ML. et al. Holmium-166 radioembolisation in patients with unresectable, chemorefractory liver metastases (HEPAR trial): a phase 1, dose-escalation study. Lancet Oncol 2012; 13: 1025-1034
  • 648 Biederman DM. et al. Outcomes of Radioembolization in the Treatment of Hepatocellular Carcinoma with Portal Vein Invasion: Resin versus Glass Microspheres. J Vasc Interv Radiol 2016; 27: 812-821 e2.
  • 649 Padia SA. et al. Radioembolization of Hepatic Malignancies: Background, Quality Improvement Guidelines, and Future Directions. J Vasc Interv Radiol 2017; 28: 1-15
  • 650 Mahnken AH. et al. Standards of practice in transarterial radioembolization. Cardiovasc Intervent Radiol 2013; 36: 613-622
  • 651 Jia Z. et al. Single-institution Experience of Radioembolization with Yttrium-90 Microspheres for Unresectable Metastatic Neuroendocrine Liver Tumors. J Gastroenterol Hepatol 2017; 32: 1617-1623
  • 652 Braat MN. et al. Radioembolization-induced liver disease: a systematic review. Eur J Gastroenterol Hepatol 2017; 29: 144-152
  • 653 Gil-Alzugaray B. et al. Prognostic factors and prevention of radioembolization-induced liver disease. Hepatology 2013; 57: 1078-1087
  • 654 Sangro B. et al. Liver disease induced by radioembolization of liver tumors: description and possible risk factors. Cancer 2008; 112: 1538-1546
  • 655 Kennedy AS. et al. Treatment parameters and outcome in 680 treatments of internal radiation with resin 90Y-microspheres for unresectable hepatic tumors. Int J Radiat Oncol Biol Phys 2009; 74: 1494-1500
  • 656 Toohey RE, Stabin MG, Watson EE. The AAPM/RSNA physics tutorial for residents: internal radiation dosimetry: principles and applications. Radiographics 2000; 20: 533-546 quiz 531–532
  • 657 Seidensticker R. et al. Hepatic toxicity after radioembolization of the liver using (90)Y-microspheres: sequential lobar versus whole liver approach. Cardiovasc Intervent Radiol 2012; 35: 1109-1118
  • 658 Seidensticker M. et al. Radiation-induced liver damage: correlation of histopathology with hepatobiliary magnetic resonance imaging, a feasibility study. Cardiovasc Intervent Radiol 2015; 38: 213-221
  • 659 Peker A. et al. Radioembolization with yttrium-90 resin microspheres for neuroendocrine tumor liver metastases. Diagn Interv Radiol 2015; 21: 54-59
  • 660 King J. et al. Radioembolization with selective internal radiation microspheres for neuroendocrine liver metastases. Cancer 2008; 113: 921-929
  • 661 Paprottka PM. et al. Radioembolization of symptomatic, unresectable neuroendocrine hepatic metastases using yttrium-90 microspheres. Cardiovasc Intervent Radiol 2012; 35: 334-342
  • 662 Atassi B. et al. Biliary sequelae following radioembolization with Yttrium-90 microspheres. J Vasc Interv Radiol 2008; 19: 691-697
  • 663 Korkmaz M. et al. Liver abscess following radioembolization with yttrium-90 microspheres. Wien Klin Wochenschr 2014; 126: 785-788
  • 664 Mascarenhas NB. et al. Hepatic abscess after yttrium-90 radioembolization for islet-cell tumor hepatic metastasis. Cardiovasc Intervent Radiol 2010; 33: 650-653