Planta Med 2022; 88(02): 98-117
DOI: 10.1055/a-1646-3618
Focus Issue Pyrrolizidine Alkaloids
Reviews

Novel Insights into Pyrrolizidine Alkaloid Toxicity and Implications for Risk Assessment: Occurrence, Genotoxicity, Toxicokinetics, Risk Assessment–A Workshop Report

Dieter Schrenk
1   Food Chemistry and Toxicology, Technical University of Kaiserslautern, Kaiserslautern, Germany
,
1   Food Chemistry and Toxicology, Technical University of Kaiserslautern, Kaiserslautern, Germany
,
Ashley Allemang
2   Procter & Gamble, Mason, OH, USA
,
Peter Fu
3   National Center for Toxicological Research, Food and Drug Administration, Jefferson, AR, USA
,
Ge Lin
4   School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR
,
Catherine Mahony
5   Procter & Gamble, Technical Centres Limited, Weybridge, Surrey, United Kingdom
,
Patrick P.J. Mulder
6   Wageningen Food Safety Research, Wageningen University & Research, Wageningen, the Netherlands
,
Ad Peijnenburg
6   Wageningen Food Safety Research, Wageningen University & Research, Wageningen, the Netherlands
,
Stefan Pfuhler
2   Procter & Gamble, Mason, OH, USA
,
Ivonne M.C.M. Rietjens
7   Division of Toxicology, Wageningen University, Wageningen, the Netherlands
,
Benjamin Sachse
8   German Federal Institute of Risk Assessment (BfR), Berlin, Germany
,
9   German Medicines Manufacturersʼ Association (BAH), Bonn, Germany
,
Anja These
8   German Federal Institute of Risk Assessment (BfR), Berlin, Germany
,
John Troutman
2   Procter & Gamble, Mason, OH, USA
,
Jacqueline Wiesner
10   Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany
› Author Affiliations

Abstract

This paper reports on the major contributions and results of the 2nd International Workshop of Pyrrolizidine Alkaloids held in September 2020 in Kaiserslautern, Germany. Pyrrolizidine alkaloids are among the most relevant plant toxins contaminating food, feed, and medicinal products of plant origin. Hundreds of PA congeners with widespread occurrence are known, and thousands of plants are assumed to contain PAs. Due to certain PAsʼ pronounced liver toxicity and carcinogenicity, their occurrence in food, feed, and phytomedicines has raised serious human health concerns. This is particularly true for herbal teas, certain food supplements, honey, and certain phytomedicinal drugs. Due to the limited availability of animal data, broader use of in vitro data appears warranted to improve the risk assessment of a large number of relevant, 1,2-unsaturated PAs. This is true, for example, for the derivation of both toxicokinetic and toxicodynamic data. These efforts aim to understand better the modes of action, uptake, metabolism, elimination, toxicity, and genotoxicity of PAs to enable a detailed dose-response analysis and ultimately quantify differing toxic potencies between relevant PAs. Accordingly, risk-limiting measures comprising production, marketing, and regulation of food, feed, and medicinal products are discussed.

Supporting Information



Publication History

Received: 13 May 2021

Accepted after revision: 15 September 2021

Article published online:
29 October 2021

© 2021. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 EFSA (European Food Safety Authority). Scientific Panel on Contaminants in the Food Chain (CONTAM). Risks for human health related to the presence of pyrrolizidine alkaloids in honey, tea, herbal infusions and food supplements. EFSA J 2017; 15: 4908
  • 2 Bodi D, Ronczka S, Gottschalk C, Behr N, Skibba A, Wagner M, Lahrssen-Wiederholt M, Preiss-Weigert A, These A. Determination of pyrrolizidine alkaloids in tea, herbal drugs and honey. Food Add Contam 2014; A31: 1886-1895
  • 3 Schulz M, Meins J, Diemert S, Zagermann-Muncke P, Goebel R, Schrenk D, Schubert-Zsilavecz M, Abdel-Tawab M. Detection of pyrrolizidine alkaloids in German licensed herbal medicinal teas. Phytomedicine 2015; 22: 648-656
  • 4 COT (Committee on Toxicity of Chemicals in Food, Consumer Products and the Environment). Statement on Pyrrolizidine Alkaloids in Food (October 2008). Accessed October 12, 2021 at: http://cot.food.gov.uk/pdfs/cotstatementpa200806.pdf
  • 5 EFSA (European Food Safety Authority). Scientific opinion on pyrrolizidine alkaloids in food and feed. Panel on Contaminants in the Food Chain (CONTAM). EFSA J 2011; 9: 2406
  • 6 EFSA (European Food Safety Authority). Dietary exposure assessment to pyrrolizidine alkaloids in the European population. EFSA J 2016; 14: 4572, DOI: 10.2903/j.efsa.2016.4572.
  • 7 EMA (European Medicines Agency). Public statement on the use of herbal medicinal products containing toxic, unsaturated pyrrolizidine alkaloids (July 8, 2020). EMA/HMPC/893108/2011. Accessed October 12, 2021 at: https://www.ema.europa.eu/en/documents/public-statement/draft-public-statement-use-herbal-medicinal-products-containing-toxic-unsaturated-pyrrolizidine_en-0.pdf
  • 8 EMA (European Medicines Agency). Public statement on the use of herbal medicinal products containing toxic, unsaturated pyrrolizidine alkaloids (PAs) (November 24, 2014). EMA/HMPC/893108/2014, final version. Accessed October 12, 2021 at: http://europa.eu/en/documents/public-statement/public-statement-use-herbal-medicinal-products-containing-toxic-unsaturated-pyrrolizidine-alkaloids_en.pdf
  • 9 BAH/BPI. Letter to the editor: Code of practice to prevent and reduce pyrrolizidine alkaloid contaminations of medicinal products of plant origin (April 29, 2016). J Appl Res Med Arom Plants (September 19, 2016). Accessed October 12, 2021 at: http://www.journals.elsevier.com/journal-of-applied-research-on-medicinal-and-aromatic-plants/news
  • 10 Tandon BN, Tandon RK, Tandon HD, Narndranathan M, Joshi YK. Epidemic of veno-occlusive disease of liver in Central India. Lancet 1976; 2: 271-272
  • 11 Mohabbat O, Srivastava RN, Younos MS, Merzad AA, Sediq GG, Aram GN. Outbreak of hepatic veno-occlusive disease in northwestern Afghanistan. Lancet 1976; 2: 269-271
  • 12 Clayton MJ, Davis TZ, Knoppel EL, Stegelmeier BL. Hepatotoxic plants that poison livestock. Vet Clin North Am Food Anim Pract 2020; 36: 715-723
  • 13 Stewart MJ, Steenkamp V. Pyrrolizidine poisoning: a neglected area in human toxicology. Ther Drug Monit 2001; 23: 698-708
  • 14 Xiao R, Zhu L, Su Y, Zhang J, Lu Y, Li J, Wang T, Fang J, Jing ZC, Dupuis J, Luo S, Hu Q. Monocrotaline pyrrole induces pulmonary endothelial damage through binding to and release from erythrocytes in lung during venous blood reoxygenation. Am J Physiol Lung Cell Mol Physiol 2019; 316: L798-L809
  • 15 He X, Xia Q, Woodling K, Lin G, Fu PP. Pyrrolizidine alkaloid-derived DNA adducts are common toxicological biomarkers of pyrrolizidine alkaloid N-oxides. J Food Drug Anal 2017; 25: 984-991
  • 16 FAO/WHO. Joint FAO/WHO Expert Committee on Food Additives (JECFA)–Eightieth meeting. Rome, 16–25 June 2015 (July 6, 2015). Accessed October 12, 2021 at: http://www.fao.org/fileadmin/user_upload/agns/pdf/jecfa/Summary_report_of_the_80th_JECFA_meeting.pdf
  • 17 Merz KH, Schrenk D. Interim relative potency factors for the toxicological risk assessment of pyrrolizidine alkaloids in food and herbal medicines. Toxicol Lett 2016; 263: 44-57
  • 18 JECFA (Joint FAO/WHO Expert Committee on Food Additives). Safety evaluation of certain food additives and contaminants: Prepared by the eightieth meeting of the Joint FAO/WHO Expert Committee on Food Additives (JECFA). Supplement 2: Pyrrolizidine alkaloids. WHO Food Additives Series, No. 71-S2. Geneva: World Health Organization; 2020
  • 19 Yang M, Ma J, Ruan J, Ye Y, Fu PPC, Lin G. Intestinal and hepatic biotransformation of pyrrolizidine alkaloid N-oxides to toxic pyrrolizidine alkaloids. Arch Toxicol 2019; 93: 2197-2209
  • 20 Edgar JA, Roeder E, Molyneux RJ. Honey from plants containing pyrrolizidine alkaloids: A potential threat to health. J Agric Food Chem 2002; 50: 2719-2730
  • 21 BfR (Bundesinstitut für Risikobewertung). Analytik und Toxizität von Pyrrolizidinalkaloiden sowie eine Einschätzung des gesundheitlichen Risikos durch deren Vorkommen in Honig. Stellungnahme Nr. 038/2011 des BfR, 2011 (August 11, 2011). Accessed October 12, 2021 at: https://www.bfr.bund.de/de/a-z_index/pyrrolizidinalkaloide-127028.html
  • 22 Dübecke A, Beckh G, Lüllmann C. Pyrrolizidine alkaloids in honey and bee pollen. Food Add Contam 2011; A28: 348-358
  • 23 BfR (Bundesinstitut für Risikobewertung). Aktualisierte Risikobewertung zu Gehalten an 1, 2-ungesättigten Pyrrolizidinalkaloiden (PA) in Lebensmitteln. Stellungnahme 026/2020 (June 17, 2020). Accessed October 12, 2021 at: https://www.bfr.bund.de/de/a-z_index/pyrrolizidinalkaloide-127028.html
  • 24 BfR (Bundesinstitut für Risikobewertung). Pyrrolizidinalkaloidgehalt in getrockneten und tiefgefrorenen Gewürzen und Kräutern zu hoch. Stellungnahme Nr. 017/2019 (June 17, 2019). Accessed October 12, 2021 at: https://www.bfr.bund.de/de/a-z_index/pyrrolizidinalkaloide-127028.html
  • 25 Kaltner F, Rychlik M, Gareis M, Gottschalk C. Occurrence and risk assessment of pyrrolizidine alkaloids in spices and culinary herbs from various geographical origins. Toxins 2020; 12: 155
  • 26 BfR (Bundesinstitut für Risikobewertung). Pyrrolizidine alkaloids in herbal teas and teas. Opinion No. 018/2013 (July 5, 2013). Accessed October 12, 2021 at: https://www.bfr.bund.de/cm/349/pyrrolizidine-alkaloids-in-herbal-teas-and-teas.pdf
  • 27 Mulder PPJ, López Sánchez P, These A, Preiss-Weigert A, Castellari M. Occurrence of pyrrolizidine alkaloids in food. EFSA supporting publication. [Epub 2015 July 23] EN-859, 116 pp. Accessed October 12, 2021 at: http://www.efsa.europa.eu/en/supporting/pub/en-859
  • 28 Mulder PPJ, López P, Castellari M, Bodi D, Ronczka S, Preiss-Weigert A, These A. Occurrence of pyrrolizidine alkaloids in animal-and plant-derived food: Results of a survey across Europe. Food Add Contam A 2018; 35: 118-133
  • 29 Picron JF, Herman M, Van Hoeck E, Goscinny S. Analytical strategies for the determination of pyrrolizidine alkaloids in plant based food and examination of the transfer rate during the infusion process. Food Chem 2018; 266: 514-523
  • 30 Kaltner F, Kukula V, Gottschalk C. Screening of food supplements for toxic pyrrolizidine alkaloids. J Consum Prot Food Safety 2020; 15: 237-243
  • 31 Kast C, Kilchenmann V, Reinhard H, Droz B, Lucchetti MA, Dübecke A, Beckh G, Zoller O. Chemical fingerprinting identifies Echium vulgare, Eupatorium cannabinum and Senecio spp. as plant species mainly responsible for pyrrolizidine alkaloids in bee-collected pollen. Food Addit Contam A 2017; 35: 316-327
  • 32 Picron JF, Herman M, Van Hoeck E, Goscinny S. Monitoring of pyrrolizidine alkaloids in beehive products and derivatives on the Belgian market. Environ Sci Pollut Res Int 2020; 27: 5693-5708
  • 33 BfR (Bundesinstitut für Risikobewertung). Pyrrolizidinalkaloide: Gehalte in Lebensmitteln sollen nach wie vor soweit wie möglich gesenkt werden. Stellungnahme Nr. 030/2016 des BfR vom 28. September 2016. Accessed October 12, 2021 at: https://www.bfr.bund.de/de/a-z_index/pyrrolizidinalkaloide-127028.html
  • 34 EC (European Commission). Commission Regulation (EU) 2020/2040 of December 11, 2020, amending Regulation (EC) No 1881/2006 as regards maximum levels of pyrrolizidine alkaloids in certain foodstuffs. Off J EU 2020; L420: 1-5
  • 35 European Pharmacopoeia. New Ph. Eur. Chapter Contaminant pyrrolizidine alkaloids (2.8.26). Supplement 10.6 of July 1, 2021. Accessed October 12, 2021 at: https://www.ema.europa.eu/en/documents/minutes/minutes-hmpc-5-7-july-2021-meeting_en.pdf
  • 36 Chen L, Ning J, Louisse J, Wesseling S, Rietjens IMCM. Use of physiologically based kinetic modelling facilitated reverse dosimetry to convert in vitro cytotoxicity data to predicted in vivo liver toxicity of lasiocarpine and riddelliine in rat. Food Chem Toxicol 2018; 116: 216-226
  • 37 Ning J, Chen L, Rietjens IMCM. Role of toxicokinetics and alternative testing strategies in pyrrolizidine alkaloid toxicity and risk assessment; state-of-the-art and future perspectives. Food Chem Toxicol 2019; 131: 110572
  • 38 Lester C, Troutman J, Obringer C, Wehmeyer K, Stofolano P, Karb M, Xu Y, Roe A, Carr G, Blackburn K, Mahony C. Intrinsic relative potency of a series of pyrrolizidine alkaloids characterized by rate and extent of metabolism. Food Chem Toxicol 2019; 131: 110523
  • 39 Yang M, Ma J, Ruan J, Zhang C, Ye Y, Fu PPC, Lin G. Absorption difference between hepatotoxic pyrrolizidine alkaloids and their N-oxides–Mechanism and its potential toxic impact. J Ethnopharmacol 2020; 249: 112421
  • 40 Tu M, Sun S, Wang K, Peng X, Wang R, Li L, Zeng S, Zhou H, Jiang H. Organic cation transporter 1 mediates the uptake of monocrotaline and plays an important role in its hepatotoxicity. Toxicology 2013; 311: 225-230
  • 41 Tu M, Li L, Lei H, Ma Z, Chen Z, Sun S, Zu S, Zhou H, Jiang H. Involvement of organic cation transporter 1 and CYP3A4 in retrorsine-induced toxicity. Toxicology 2014; 322: 34-42
  • 42 Louisse J, Beekmann K, Rietjens IMCM. Use of physiologically based kinetic modeling-based reverse dosimetry to predict in vivo toxicity from in vitro data. Chem Res Toxicol 2017; 30: 114-125
  • 43 Suparmi S, Wesseling S, Rietjens IMCM. Monocrotaline-induced liver toxicity in rat predicted by a combined in vitro-physiologically based kinetic modeling approach. Arch Toxicol 2020; 138: 111230
  • 44 Stegelmeier BL, Edgar JA, Colegate SM, Gardner DR, Schoch TK, Coulombe RA, Molyneux RJ. Pyrrolizidine alkaloid plants, metabolism and toxicity. J Nat Toxins 1999; 8: 95-116
  • 45 Wang Q, Spenkelink B, Boonpawa R, Rietjens IMCM, Beekmann K. Use of physiologically based kinetic modelling to predict rat gut microbial metabolism on the isoflavone daidzein to S-equol and its consequences for ERa activation. Mol Nutr Food Res 2020; 64: 1900912
  • 46 Maedge I, Gehling M, Schoene C, Winterhalter P, These A. Pyrrolizidine alkaloid profiling of four Boraginaceae species from Northern Germany and implications for the analytical scope proposed for monitoring of maximum levels. Food Add Contam Part A 2020; 388: 1339-1358
  • 47 BVL (Bundesamt für Verbraucherschutz und Lebensmittelsicherheit). BVL-Report – 11.3, Berichte zur Lebensmittelsicherheit: Monitoring 2015. Accessed October 12, 2021 at: https://www.bvl.bund.de/SharedDocs/Downloads/01_Lebensmittel/01_lm_mon_dokumente/01_Monitoring_Berichte/2015_lm_monitoring_bericht.pdf?__blob=publicationFile&v=6
  • 48 Geburek I, Preiss-Weigert A, Lahrssen-Wiederholt M, Schrenk D, These A. In vitro metabolism of pyrrolizidine alkaloids–metabolic degradation an GSH conjugate formation of different structure types. Food Chem Toxicol 2020; 135: 110868 DOI: 10.1016/j.fct.2019.110868.
  • 49 Geburek I, Schrenk D, These A. In vitro biotransformation of pyrrolizidine alkaloids in different species. Part II: Identification and quantitative assessment of the metabolite profile of six structurally different pyrrolizidine alkaloids. Arch Toxicol 2020; 94: 3759-3774
  • 50 Fu PP, Chou MW, Churchwell M, Wang Y, Zhao Y, Xia Q, Gamboa da Costa G, Matilde M, Beland FA, Doerge DR. Detection and quantitation of pyrrolizidine alkaloid-derived DNA adducts in vivo and in vitro by liquid chromatography-electrospray ionization-tandem mass spectrometry. Chem Res Toxicol 2010; 23: 637-652
  • 51 Xia Q, Zhao Y, Von Tungeln LS, Doerge D, Lin G, Cai L, Fu PP. Pyrrolizidine alkaloids derived DHP-DNA adducts are a common biological biomarker of pyrrolizidine alkaloid-initiated tumorigenicity. Chem Res Toxicol 2013; 26: 1384-1396
  • 52 Fu PP. Pyrrolizidine alkaloids: metabolic activation pathways leading to liver tumor initiation. Chem Res Toxicol 2017; 30: 81-93
  • 53 Xia Q, He X, Ma L, Chen S, Fu PP. Pyrrolizidine alkaloid secondary pyrrolic metabolites construct multiple activation pathways leading to DNA adduct formation and potential liver tumor initiation. Chem Res Toxicol 2018; 31: 619-628
  • 54 He X, Xia Q, Gamboa da Costa G, Lin G, Fu PP. 1-Formyl-7-hydroxy-6,7- dihydro-5H-pyrrolizine (1-CHO-DHP)–a potential proximate carcinogenic metabolite of pyrrolizidine alkaloids. Chem Res Toxicol 2019; 32: 1193-1203
  • 55 He X, Xia Q, Zhao Y, Fu PP. 1-Formyl-7-hydroxy-6,7-dihydro-5H-pyrrolizine (1-CHO-DHP)-cysteine conjugates: metabolic formation and binding to cellular DNA. Chem Res Toxicol 2020; 33: 2139-2146
  • 56 Chen L, Peijnenburg A, de Haan L, Rietjens IMCM. Prediction of in vivo genotoxicity of lasiocarpine and riddelliine using a combined in vitro-physiologically based kinetic modelling-facilitated reverse dosimetry approach. Arch Toxicol 2019; 93: 2385-2395
  • 57 Fu PP. Pyrrolizidine alkaloids: Metabolic activation pathways leading to liver tumor initiation. Chem Res Toxicol 2017; 30: 81-93
  • 58 Fahrer J, Kaina B. O6-methylguanine-DNA methyltransferase in the defense against N-nitroso compounds and colorectal cancer. Carcinogenesis 2013; 34: 2435-2442
  • 59 Fahrer J, Kaina B. Impact of DNA repair on the dose-response of colorectal cancer formation induced by dietary carcinogens. Food Chem Toxicol 2017; 106: 583-594
  • 60 Kaina B, Christmann M, Naumann S, Roos WP. MGMT: key node in the battle against genotoxicity, carcinogenicity and apoptosis induced by alkylating agents. DNA Repair (Amst) 2007; 6: 1079-1099
  • 61 Fahrer J, Frisch J, Nagel G, Kraus A, Dörsam B, Thomas AD, Reißig S, Waisman A, Kaina B. DNA repair by MGMT, but not AAG, causes a threshold in alkylation-induced colorectal carcinogenesis. Carcinogenesis 2015; 36: 1235-1244
  • 62 Kraus A, McKeague M, Seiwert N, Nagel G, Geisen SM, Ziegler N, Trantakis IA, Kaina B, Thomas AD, Sturla SJ, Fahrer J. Immunological and mass spectrometry-based approaches to determine thresholds of the mutagenic DNA adduct O(6)-methylguanine in vivo . Arch Toxicol 2019; 93: 559-572
  • 63 Lutz WK, Lutz RW. Statistical model to estimate a threshold dose and its confidence limits for the analysis of sublinear dose-response relationships, exemplified for mutagenicity data. Mutat Res 2009; 678: 118-122
  • 64 Rutz L, Gao L, Küpper JH, Schrenk D. Structure-dependent genotoxic potencies of selected pyrrolizidine alkaloids in metabolically competent HepG2 cells. Arch Toxicol 2020; 94: 4159-4172
  • 65 Allemang A, Mahony C, Lester C, Pfuhler S. Relative potency of fifteen pyrrolizidine alkaloids to induce DNA damage as measured by micronucleus induction in HepaRG human liver cells. Food Chem Toxicol 2018; 121: 72-81
  • 66 Rogiers V. Recent developments in the way forward for alternative methods: formation of national consensus platforms in Europe. Toxicol Appl Pharmacol 2005; 207: 408-413
  • 67 Louisse J, Rijkers D, Stoopen G, Holleboom WJ, Delagrange M, Molthof E, Mulder PPJ, Hoogenboom RLAP, Audebert M, Peijnenburg AACM. Determination of genotoxic potencies of pyrrolizidine alkaloids in HepaRG cells using the γH2AX Assay. Food Chem Toxicol 2019; 131: 110532
  • 68 Gao L, Rutz L, Schrenk D. Structure-dependent hepato-cytotoxic potencies of selected pyrrolizidine alkaloids in primary rat hepatocyte culture. Food Chem Toxicol 2020; 135: 110923
  • 69 EC (European Commission). Commission Regulation (EU) 2020/2040 of December 11 2020 amending Regulation (EC) No 1881/2006 as regards maximum levels of pyrrolizidine alkaloids in certain foodstuffs. Off J EU L420/1. Accessed October 12, 2021 at: http://data.europa.eu/eli/reg/2020/2040/oj
  • 70 Lichtenstein D, Luckert C, Alarcan J, de Sousa G, Gioutlakis M, Katsanou ES, Konstantinidou P, Machera K, Milani ES, Peijnenburg A, Rahmani R, Rijkers D, Spyropoulou A, Stamou M, Stoopen G, Sturla SJ, Wollscheid B, Zucchini-Pascal N, Braeuning A, Lampen A. An adverse outcome pathway-based approach to assess steatotic mixture effects of hepatotoxic pesticides in vitro . Food Chem Toxicol 2020; 139: 111283
  • 71 Frei H, Lüthy J, Brauchli J, Zweifel U, Würgler FE, Schlatter C. Structure/activity relationships of the genotoxic potencies of sixteen pyrrolizidine alkaloids assayed for the induction of somatic mutation and recombination in wing cells of Drosophila melanogaster. Chem Biol Interact 1992; 83: 1-22
  • 72 Culvenor CCJ, Edgar JA, Jago MV, Outteridge A, Peterson JE, Smith LW. Hepato- and pneumotoxicity of pyrrolizidine alkaloids and derivatives in relation to molecular structure. Chem Biol Interact 1976; 12: 299-324
  • 73 DFG (Deutsche Forschungsgemeinschaft), Senatskommission zur Beurteilung der gesundheitlichen Unbedenklichkeit von Lebensmitteln (SKLM). Stellungnahme zu Pyrrolizidinalkaloiden in Honigen, Imkereierzeugnissen und Pollenprodukten. 2002. Accessed October 12, 2021 at: https://www.dfg.de/download/pdf/dfg_im_profil/reden_stellungnahmen/2003/sklm_pa_honig_170403end.pdf
  • 74 EFSA (European Food Safety Authority: Scientific Committee). Opinion of the Scientific Committee on a request from EFSA related to a harmonised approach for risk assessment of substances which are both genotoxic and carcinogenic. Request No EFSA-Q-2004–020, adopted on October 18 2005. EFSA J 2005; 282: 1-31
  • 75 Molyneux RJ, Gardner DL, Colegate SM, Edgar JA. Pyrrolizidine alkaloid toxicity in livestock: a paradigm for human poisoning?. Food Add Contam Part A 2011; 28: 293-307
  • 76 Culvenor CC. Estimated intakes of pyrrolizidine alkaloids by humans. A comparison with dose rates causing tumors in rats. J Toxicol Environ Health 1983; 11: 625-635
  • 77 Moreira R, Pereira DM, Valentão P, Andrade PB. Pyrrolizidine alkaloids: Chemistry, pharmacology, toxicology and food safety. Int J Molec Sci 2018; 19: E1668
  • 78 BGA (Bundesgesundheitsamt). Bekanntmachung über die Zulassung und Registrierung von Arzneimitteln vom 05. Juni 1992 Abwehr von Arzneimittelrisiken – Stufe II, hier: Arzneimittel, die Pyrrolizidin-Alkaloide mit einem 1, 2-ungesättigtem Necin-Gerüst enthalten. Bundesanzeiger 1992; 111: 4805
  • 79 NTP (National Toxicology Program). Bioassay of lasiocarpine for possible carcinogenicity. NTP Technical Report 1978; 39: 1-66
  • 80 NTP (National Toxicology Program). Toxicology and carcinogenesis studies of riddelliine. NTP Technical Report 2003; 508: 1-280
  • 81 EMA (European Medicines Agency). ICH guideline M7(R1) on assessment and control of DNA reactive (mutagenic) impurities in pharmaceuticals to limit potential carcinogenic risk (August 25, 2015). Accessed October 12, 2021 at: https://www.ema.europa.eu/en/ich-m7-assessment-control-dna-reactive-mutagenic-impurities-pharmaceuticals-limit-potential
  • 82 EMA (European Medicines Agency). Public Statement on contamination of herbal medicinal products/traditional herbal medicinal products with pyrrolizidine alkaloids – Transitional recommendations for risk management and quality control (EMA/HMPC/328782/2016) (May 31, 2016). Accessed October 12, 2021 at: https://www.ema.europa.eu/documents/public-statement/public-statement-contamination-herbal-medicinal-products/traditional-herbal-medicinal-products-pyrrolizidine-alkaloids_en.pdf
  • 83 EMA (European Medicine Agency). Assessment report. Referral under Article 31 of Directive 2001/83/EC angiotensin-II-receptor antagonists (sartans) containing a tetrazole group Procedure no: EMEA/H/A-31/1471. EMA/217823/2019 (February 14, 2019). Accessed October 12, 2021 at: https://www.ema.europa.eu/en/documents/variation-report/sartans-article-31-referral-chmp-assessment-report_en.pdf
  • 84 BfR (Bundesinstitut für Risikobewertung) German Federal Institute for Risk Assessment. Determination of pyrrolizidine alkaloids (PA) in botanical substances using SPE-LC-MS/MS. Description of the method. BfR-PA-Tee-2.0/2014. Accessed October 12, 2021 at: http://www.bfr.bund.de/cm/343/bestimmung-von-pyrrolizidinalkaloiden.pdf
  • 85 BfArM (Bundesinstitut für Arzneimittel und Medizinprodukte). Bekanntmachung zur Prüfung des Gehalts an Pyrrolizidinalkaloiden zur Sicherstellung der Qualität und Unbedenklichkeit von Arzneimitteln, die pflanzliche Stoffe bzw. pflanzliche Zubereitungen oder homöopathische Zubereitungen aus pflanzlichen Ausgangsstoffen als Wirkstoffe enthalten (March 1, 2016). Accessed October 12, 2021 at: https://www.bfarm.de/SharedDocs/Bekanntmachungen/DE/Arzneimittel/besTherap/bm-besTherap-20160301-pa-pdf.html
  • 86 EMA (European Medicines Agency). HMPC meeting report on European Union herbal monographs, guidelines and other activities. The 86th HMPC meeting, held on 14–16 January 2019 (EMA/HMPC/26549/2019) (January 16, 2019). Accessed October 12, 2021 at: https://www.ema.europa.eu/documents/committee-report/hmpc-meeting-report-european-union-herbal-monographs-guidelines-other-activities-14-16-january-2019_en.pdf
  • 87 EMA (European Medicines Agency). Public statement on the use of herbal medicinal products containing toxic, unsaturated pyrrolizidine alkaloids (PAs) including recommendations regarding contamination of herbal medicinal products with pyrrolizidine alkaloids. Final (July 7, 2021). Accessed October 12, 2021 at: https://www.ema.europa.eu/en/documents/public-statement/draft-public-statement-use-herbal-medicinal-products-containing-toxic-unsaturated-pyrrolizidine_en-0.pdf