CC BY-NC-ND 4.0 · Hamostaseologie 2021; 41(06): 447-457
DOI: 10.1055/a-1661-1908
Review Article

Modulating Autoimmunity against LDL: Development of a Vaccine against Atherosclerosis

Timoteo Marchini
1   Cardiology and Angiology I, University Heart Center and Medical Center – University of Freiburg, Germany
2   Faculty of Medicine, University of Freiburg, Freiburg, Germany
3   Facultad de Farmacia y Bioquímica, Instituto de Bioquímica y Medicina Molecular (IBIMOL), Universidad de Buenos Aires, CONICET, Buenos Aires, Argentina
4   Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Germany
,
Tijani Abogunloko
1   Cardiology and Angiology I, University Heart Center and Medical Center – University of Freiburg, Germany
2   Faculty of Medicine, University of Freiburg, Freiburg, Germany
4   Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Germany
,
Dennis Wolf
1   Cardiology and Angiology I, University Heart Center and Medical Center – University of Freiburg, Germany
2   Faculty of Medicine, University of Freiburg, Freiburg, Germany
› Author Affiliations
Funding This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation program (grant agreement no. 853425). T.M. and D.W. are members of the SFB1425, funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation).

Abstract

Atherosclerosis is a chronic inflammatory disease of the arterial wall that leads to the build-up of occluding atherosclerotic plaques. Its clinical sequelae, myocardial infarction and stroke, represent the most frequent causes of death worldwide. Atherosclerosis is a multifactorial pathology that involves traditional risk factors and chronic low-grade inflammation in the atherosclerotic plaque and systemically. This process is accompanied by a strong autoimmune response that involves autoreactive T cells in lymph nodes and atherosclerotic plaques, as well as autoantibodies that recognize low-density lipoprotein (LDL) and its main protein component apolipoprotein B (ApoB). In the past 60 years, numerous preclinical observations have suggested that immunomodulatory vaccination with LDL, ApoB, or its peptides has the potential to specifically dampen autoimmunity, enhance tolerance to atherosclerosis-specific antigens, and protect from experimental atherosclerosis in mouse models. Here, we summarize and discuss mechanisms, challenges, and therapeutic opportunities of immunomodulatory vaccination and other strategies to enhance protective immunity in atherosclerosis.

Zusammenfassung

Die Atherosklerose stellt eine chronisch entzündliche Erkrankung der Arterienwand dar, die zur Bildung von Gefäß-verengenden atherosklerotischen Plaques führt. Ihre klinischen Folgen, Herzinfarkt und Schlaganfall, repräsentieren die weltweit häufigsten Todesursachen. Der Erkrankung liegt ein multifaktorieller Krankheitsprozess zu Grunde, der traditionelle Risikofaktoren und eine chronische lokale und systemische Entzündungsreaktion umfasst. Die Entstehung der Atherosklerose wird von einer starken Autoimmunreaktion begleitet, an der autoreaktive T-Zellen in Lymphknoten und atherosklerotischen Plaques sowie Autoantikörper beteiligt sind, die gegen low-density lipoprotein (LDL) Cholesterin und Apolipoprotein B (ApoB) gerichtet sind. Vielfältige präklinische Untersuchungen aus den vergangenen 60 Jahren konnten zeigen, dass eine immunmodulatorische Impfung mit LDL, ApoB und ApoB-Peptiden das Potenzial hat, die Autoimmunität in er atherosklerotischen Plaque abzuschwächen, eine Toleranz gegenüber Arteriosklerose-spezifischen Antigenen auszubauen und vor Atherosklerose in Mausmodellen zu schützen. In diesem Artikel diskutieren wir die Mechanismen, Herausforderungen und therapeutischen Möglichkeiten einer immunmodulatorischen Impfung und anderer Strategien, die zur einer Stärkung der protektiven Immunantwort in der Atherosklerose führen.



Publication History

Received: 05 July 2021

Accepted: 04 October 2021

Article published online:
23 December 2021

© 2021. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Libby P. Inflammation in atherosclerosis. Nature 2002; 420 (6917): 868-874
  • 2 Kruk ME, Gage AD, Joseph NT, Danaei G, García-Saisó S, Salomon JA. Mortality due to low-quality health systems in the universal health coverage era: a systematic analysis of amenable deaths in 137 countries. Lancet 2018; 392 (10160): 2203-2212
  • 3 Ross R. The pathogenesis of atherosclerosis–an update. N Engl J Med 1986; 314 (08) 488-500
  • 4 Wolf D, Zirlik A, Ley K. Beyond vascular inflammation–recent advances in understanding atherosclerosis. Cell Mol Life Sci 2015; 72 (20) 3853-3869
  • 5 Wolf D, Ley K. Immunity and inflammation in atherosclerosis. Circ Res 2019; 124 (02) 315-327
  • 6 Marchini T, Zirlik A, Wolf D. Pathogenic role of air pollution particulate matter in cardiometabolic disease: evidence from mice and humans. Antioxid Redox Signal 2020; 33 (04) 263-279
  • 7 Colantonio LD, Bittner V, Reynolds K. et al. Association of serum lipids and coronary heart disease in contemporary observational studies. Circulation 2016; 133 (03) 256-264
  • 8 Nahrendorf M. Myeloid cell contributions to cardiovascular health and disease. Nat Med 2018; 24: 711-720
  • 9 Härdtner C, Kornemann J, Krebs K. et al. Inhibition of macrophage proliferation dominates plaque regression in response to cholesterol lowering. Basic Res Cardiol 2020; 115 (06) 78
  • 10 Stemme S, Faber B, Holm J, Wiklund O, Witztum JL, Hansson GK. T lymphocytes from human atherosclerotic plaques recognize oxidized low density lipoprotein. Proc Natl Acad Sci U S A 1995; 92 (09) 3893-3897
  • 11 Marchini T, Hansen S, Wolf D. ApoB-specific CD4+ T cells in mouse and human atherosclerosis. Cells 2021; 10 (02) 446
  • 12 Zinkernagel RM, Hengartner H. Regulation of the immune response by antigen. Science 2001; 293: 251-253 DOI: 10.1126/science.1063005. . PMID: 11452115
  • 13 Winkels H, Wolf D. Heterogeneity of T cells in atherosclerosis defined by single-cell RNA-sequencing and cytometry by time of flight. Arterioscler Thromb Vasc Biol 2021; 41 (02) 549-563
  • 14 Fernandez DM, Rahman AH, Fernandez NF. et al. Single-cell immune landscape of human atherosclerotic plaques. Nat Med 2019; 25 (10) 1576-1588
  • 15 Koltsova EK, Garcia Z, Chodaczek G. et al. Dynamic T cell-APC interactions sustain chronic inflammation in atherosclerosis. J Clin Invest 2012; 122 (09) 3114-3126
  • 16 Neefjes J, Jongsma ML, Paul P, Bakke O. Towards a systems understanding of MHC class I and MHC class II antigen presentation. Nat Rev Immunol 2011; 11 (12) 823-836
  • 17 Frostegard J, Ulfgren AK, Nyberg P. et al. Cytokine expression in advanced human atherosclerotic plaques: dominance of pro-inflammatory (Th1) and macrophage-stimulating cytokines. Atherosclerosis 1999; 145 (01) 33-43
  • 18 Foks AC, Lichtman AH, Kuiper J. Treating atherosclerosis with regulatory T cells. Arterioscler Thromb Vasc Biol 2015; 35 (02) 280-287
  • 19 Sakaguchi S. Naturally arising CD4+ regulatory t cells for immunologic self-tolerance and negative control of immune responses. Annu Rev Immunol 2004; 22: 531-562
  • 20 Sharma M, Schlegel MP, Afonso MS. et al. Regulatory T cells license macrophage pro-resolving functions during atherosclerosis regression. Circ Res 2020; 127 (03) 335-353
  • 21 Mor A, Luboshits G, Planer D, Keren G, George J. Altered status of CD4(+)CD25(+) regulatory T cells in patients with acute coronary syndromes. Eur Heart J 2006; 27 (21) 2530-2537
  • 22 Wigren M, Björkbacka H, Andersson L. et al. Low levels of circulating CD4+FoxP3+ T cells are associated with an increased risk for development of myocardial infarction but not for stroke. Arterioscler Thromb Vasc Biol 2012; 32 (08) 2000-2004
  • 23 McGeachy MJ, Cua DJ, Gaffen SL. The IL-17 family of cytokines in health and disease. Immunity 2019; 50 (04) 892-906
  • 24 Taleb S, Tedgui A, Mallat Z. IL-17 and Th17 cells in atherosclerosis: subtle and contextual roles. Arterioscler Thromb Vasc Biol 2015; 35 (02) 258-264
  • 25 Crotty S. T follicular helper cell biology: a decade of discovery and diseases. Immunity 2019; 50 (05) 1132-1148
  • 26 Gaddis DE, Padgett LE, Wu R. et al. Apolipoprotein AI prevents regulatory to follicular helper T cell switching during atherosclerosis. Nat Commun 2018; 9 (01) 1095
  • 27 Wolf D, Gerhardt T, Winkels H. et al. Pathogenic autoimmunity in atherosclerosis evolves from initially protective apolipoprotein B100-reactive CD4+ T-regulatory cells. Circulation 2020; 142 (13) 1279-1293
  • 28 Kimura T, Kobiyama K, Winkels H. et al. Regulatory CD4+ T cells recognize major histocompatibility complex class II molecule-restricted peptide epitopes of apolipoprotein B. Circulation 2018; 138 (11) 1130-1143
  • 29 Li J, McArdle S, Gholami A. et al. CCR5+T-bet+FoxP3+ effector CD4 T cells drive atherosclerosis. Circ Res 2016; 118 (10) 1540-1552
  • 30 Butcher MJ, Filipowicz AR, Waseem TC. et al. Atherosclerosis-driven Treg plasticity results in formation of a dysfunctional subset of plastic IFNγ+ Th1/Tregs. Circ Res 2016; 119 (11) 1190-1203
  • 31 Rosenblum MD, Remedios KA, Abbas AK. Mechanisms of human autoimmunity. J Clin Invest 2015; 125 (06) 2228-2233
  • 32 Winkels H, Ehinger E, Vassallo M. et al. Atlas of the immune cell repertoire in mouse atherosclerosis defined by single-cell RNA-sequencing and mass cytometry. Circ Res 2018; 122 (12) 1675-1688
  • 33 Blank CU, Haining WN, Held W. et al. Defining ‘T cell exhaustion’. Nat Rev Immunol 2019; 19 (11) 665-674
  • 34 Bu DX, Tarrio M, Maganto-Garcia E. et al. Impairment of the programmed cell death-1 pathway increases atherosclerotic lesion development and inflammation. Arterioscler Thromb Vasc Biol 2011; 31 (05) 1100-1107
  • 35 Kusters PJH, Lutgens E, Seijkens TTP. Exploring immune checkpoints as potential therapeutic targets in atherosclerosis. Cardiovasc Res 2018; 114 (03) 368-377
  • 36 Hermansson A, Ketelhuth DF, Strodthoff D. et al. Inhibition of T cell response to native low-density lipoprotein reduces atherosclerosis. J Exp Med 2010; 207 (05) 1081-1093
  • 37 Kimura T, Kobiyama K, Winkels H. et al. Regulatory CD4(+) T Cells Recognize MHC-II-Restricted Peptide Epitopes of Apolipoprotein B. Circulation 2018
  • 38 Lutgens E, de Muinck ED, Kitslaar PJ, Tordoir JH, Wellens HJ, Daemen MJ. Biphasic pattern of cell turnover characterizes the progression from fatty streaks to ruptured human atherosclerotic plaques. Cardiovasc Res 1999; 41 (02) 473-479
  • 39 Paulsson G, Zhou X, Törnquist E, Hansson GK. Oligoclonal T cell expansions in atherosclerotic lesions of apolipoprotein E-deficient mice. Arterioscler Thromb Vasc Biol 2000; 20 (01) 10-17
  • 40 Lin Z, Qian S, Gong Y. et al. Deep sequencing of the T cell receptor β repertoire reveals signature patterns and clonal drift in atherosclerotic plaques and patients. Oncotarget 2017; 8 (59) 99312-99322
  • 41 Fredrikson GN, Hedblad B, Berglund G. et al. Identification of immune responses against aldehyde-modified peptide sequences in ApoB associated with cardiovascular disease. Arterioscler Thromb Vasc Biol 2003; 23 (05) 872-878
  • 42 Tsiantoulas D, Diehl CJ, Witztum JL, Binder CJ. B cells and humoral immunity in atherosclerosis. Circ Res 2014; 114 (11) 1743-1756
  • 43 Sage AP, Tsiantoulas D, Binder CJ, Mallat Z. The role of B cells in atherosclerosis. Nat Rev Cardiol 2019; 16 (03) 180-196
  • 44 Song L, Leung C, Schindler C. Lymphocytes are important in early atherosclerosis. J Clin Invest 2001; 108 (02) 251-259
  • 45 Dansky HM, Charlton SA, Harper MM, Smith JDT. T and B lymphocytes play a minor role in atherosclerotic plaque formation in the apolipoprotein E-deficient mouse. Proc Natl Acad Sci U S A 1997; 94 (09) 4642-4646
  • 46 Zhou X, Robertson AK, Hjerpe C, Hansson GK. Adoptive transfer of CD4+ T cells reactive to modified low-density lipoprotein aggravates atherosclerosis. Arterioscler Thromb Vasc Biol 2006; 26 (04) 864-870
  • 47 Wigren M, Rattik S, Yao Mattisson I. et al. Lack of ability to present antigens on major histocompatibility complex class II molecules aggravates atherosclerosis in ApoE−/− mice. Circulation 2019; 139 (22) 2554-2566
  • 48 Ley K. 2015 Russell Ross Memorial Lecture in vascular biology: protective autoimmunity in atherosclerosis. Arterioscler Thromb Vasc Biol 2016; 36 (03) 429-438
  • 49 Winkels H, Ehinger E, Ghosheh Y, Wolf D, Ley K. Atherosclerosis in the single-cell era. Curr Opin Lipidol 2018; 29 (05) 389-396
  • 50 Nettersheim FS, De Vore L, Winkels H. Vaccination in atherosclerosis. Cells 2020; 9 (12) E2560
  • 51 Wolf D, Gerhardt T, Ley K. Vaccination to prevent cardiovascular disease. In: Cardiac and Vascular Biology. Springer International Publishing; 2017: 29-52
  • 52 Wick G, Jakic B, Buszko M, Wick MC, Grundtman C. The role of heat shock proteins in atherosclerosis. Nat Rev Cardiol 2014; 11 (09) 516-529
  • 53 Zhu J, Quyyumi AA, Rott D. et al. Antibodies to human heat-shock protein 60 are associated with the presence and severity of coronary artery disease: evidence for an autoimmune component of atherogenesis. Circulation 2001; 103 (08) 1071-1075
  • 54 Wick C. Tolerization against atherosclerosis using heat shock protein 60. Cell Stress Chaperones 2016; 21 (02) 201-211
  • 55 Perschinka H, Mayr M, Millonig G. et al. Cross-reactive B-cell epitopes of microbial and human heat shock protein 60/65 in atherosclerosis. Arterioscler Thromb Vasc Biol 2003; 23 (06) 1060-1065
  • 56 Binder CJ, Hörkkö S, Dewan A. et al. Pneumococcal vaccination decreases atherosclerotic lesion formation: molecular mimicry between Streptococcus pneumoniae and oxidized LDL. Nat Med 2003; 9 (06) 736-743
  • 57 Tsutsumi A, Matsuura E, Ichikawa K. et al. Antibodies to beta 2-glycoprotein I and clinical manifestations in patients with systemic lupus erythematosus. Arthritis Rheum 1996; 39 (09) 1466-1474
  • 58 Kandiah DA, Krilis SA. Beta 2-glycoprotein I. Lupus 1994; 3 (04) 207-212
  • 59 George J, Harats D, Gilburd B. et al. Immunolocalization of beta2-glycoprotein I (apolipoprotein H) to human atherosclerotic plaques: potential implications for lesion progression. Circulation 1999; 99 (17) 2227-2230
  • 60 De Haro J, Esparza L, Bleda S, Varela C, Sanchez C, Acin F. Attenuation of early atherosclerotic lesions by immunotolerance with β2 glycoprotein I and the immunomodulatory effectors interleukin 2 and 10 in a murine model. J Vasc Surg 2015; 62 (06) 1625-1631
  • 61 McDonnell T, Wincup C, Buchholz I. et al. The role of beta-2-glycoprotein I in health and disease associating structure with function: more than just APS. Blood Rev 2020; 39: 100610
  • 62 Shah PK. Inflammation, infection and atherosclerosis. Trends Cardiovasc Med 2019; 29 (08) 468-472
  • 63 Udell JA, Zawi R, Bhatt DL. et al. Association between influenza vaccination and cardiovascular outcomes in high-risk patients: a meta-analysis. JAMA 2013; 310 (16) 1711-1720
  • 64 Macintyre CR, Heywood AE, Kovoor P. et al. Ischaemic heart disease, influenza and influenza vaccination: a prospective case control study. Heart 2013; 99 (24) 1843-1848
  • 65 Rosenfeld ME, Campbell LA. Pathogens and atherosclerosis: update on the potential contribution of multiple infectious organisms to the pathogenesis of atherosclerosis. Thromb Haemost 2011; 106 (05) 858-867
  • 66 Naghavi M, Wyde P, Litovsky S. et al. Influenza infection exerts prominent inflammatory and thrombotic effects on the atherosclerotic plaques of apolipoprotein E-deficient mice. Circulation 2003; 107 (05) 762-768
  • 67 Hendren NS, Drazner MH, Bozkurt B, Cooper Jr LT. Description and proposed management of the acute COVID-19 cardiovascular syndrome. Circulation 2020; 141 (23) 1903-1914
  • 68 Libby P. The heart in COVID-19: primary target or secondary bystander?. JACC Basic Transl Sci 2020; 5 (05) 537-542
  • 69 Varga Z, Flammer AJ, Steiger P. et al. Endothelial cell infection and endotheliitis in COVID-19. Lancet 2020; 395 (10234): 1417-1418
  • 70 Lindner D, Fitzek A, Bräuninger H. et al. Association of cardiac infection with SARS-CoV-2 in confirmed COVID-19 autopsy cases. JAMA Cardiol 2020; 5 (11) 1281-1285
  • 71 Gero S, Gergely J, Jakab L. et al. Inhibition of cholesterol atherosclerosis by immunisation with beta-lipoprotein. Lancet 1959; 2 (7088): 6-7
  • 72 Freigang S, Hörkkö S, Miller E, Witztum JL, Palinski W. Immunization of LDL receptor-deficient mice with homologous malondialdehyde-modified and native LDL reduces progression of atherosclerosis by mechanisms other than induction of high titers of antibodies to oxidative neoepitopes. Arterioscler Thromb Vasc Biol 1998; 18 (12) 1972-1982
  • 73 Palinski W, Miller E, Witztum JL. Immunization of low density lipoprotein (LDL) receptor-deficient rabbits with homologous malondialdehyde-modified LDL reduces atherogenesis. Proc Natl Acad Sci U S A 1995; 92 (03) 821-825
  • 74 Ameli S, Hultgårdh-Nilsson A, Regnström J. et al. Effect of immunization with homologous LDL and oxidized LDL on early atherosclerosis in hypercholesterolemic rabbits. Arterioscler Thromb Vasc Biol 1996; 16 (08) 1074-1079
  • 75 George J, Afek A, Gilburd B. et al. Hyperimmunization of apo-E-deficient mice with homologous malondialdehyde low-density lipoprotein suppresses early atherogenesis. Atherosclerosis 1998; 138 (01) 147-152
  • 76 Zhou X, Caligiuri G, Hamsten A, Lefvert AK, Hansson GK. LDL immunization induces T-cell-dependent antibody formation and protection against atherosclerosis. Arterioscler Thromb Vasc Biol 2001; 21 (01) 108-114
  • 77 Chyu KY, Reyes OS, Zhao X. et al. Timing affects the efficacy of LDL immunization on atherosclerotic lesions in apo E (-/-) mice. Atherosclerosis 2004; 176 (01) 27-35
  • 78 Zhou X, Robertson AK, Rudling M, Parini P, Hansson GK. Lesion development and response to immunization reveal a complex role for CD4 in atherosclerosis. Circ Res 2005; 96 (04) 427-434
  • 79 Zhong Y, Wang X, Ji Q. et al. CD4+LAP + and CD4 +CD25 +Foxp3 + regulatory T cells induced by nasal oxidized low-density lipoprotein suppress effector T cells response and attenuate atherosclerosis in ApoE-/- mice. J Clin Immunol 2012; 32 (05) 1104-1117
  • 80 Kobiyama K, Saigusa R, Ley K. Vaccination against atherosclerosis. Curr Opin Immunol 2019; 59: 15-24
  • 81 Tse K, Gonen A, Sidney J. et al. Atheroprotective vaccination with MHC-II restricted peptides from ApoB-100. Front Immunol 2013; 4: 493
  • 82 Kimura T, Tse K, McArdle S. et al. Atheroprotective vaccination with MHC-II-restricted ApoB peptides induces peritoneal IL-10-producing CD4 T cells. Am J Physiol Heart Circ Physiol 2017; 312 (04) H781-H790
  • 83 Klingenberg R, Lebens M, Hermansson A. et al. Intranasal immunization with an apolipoprotein B-100 fusion protein induces antigen-specific regulatory T cells and reduces atherosclerosis. Arterioscler Thromb Vasc Biol 2010; 30 (05) 946-952
  • 84 Gisterå A, Hermansson A, Strodthoff D. et al. Vaccination against T-cell epitopes of native ApoB100 reduces vascular inflammation and disease in a humanized mouse model of atherosclerosis. J Intern Med 2017; 281 (04) 383-397
  • 85 Hermansson A, Johansson DK, Ketelhuth DF, Andersson J, Zhou X, Hansson GK. Immunotherapy with tolerogenic apolipoprotein B-100-loaded dendritic cells attenuates atherosclerosis in hypercholesterolemic mice. Circulation 2011; 123 (10) 1083-1091
  • 86 Kobiyama K, Vassallo M, Mitzi J. et al. A clinically applicable adjuvant for an atherosclerosis vaccine in mice. Eur J Immunol 2018; 48 (09) 1580-1587
  • 87 Wigren M, Bengtsson D, Dunér P. et al. Atheroprotective effects of Alum are associated with capture of oxidized LDL antigens and activation of regulatory T cells. Circ Res 2009; 104 (12) e62-e70
  • 88 Herbin O, Ait-Oufella H, Yu W. et al. Regulatory T-cell response to apolipoprotein B100-derived peptides reduces the development and progression of atherosclerosis in mice. Arterioscler Thromb Vasc Biol 2012; 32 (03) 605-612
  • 89 Marchini T, Mitre LS, Wolf D. Inflammatory cell recruitment in cardiovascular disease. Front Cell Dev Biol 2021; 9: 635527
  • 90 Shaw MK, Tse KY, Zhao X. et al. T-cells specific for a self-peptide of ApoB-100 exacerbate aortic atheroma in murine atherosclerosis. Front Immunol 2017; 8: 95
  • 91 Schulien I, Kemming J, Oberhardt V. et al. Characterization of pre-existing and induced SARS-CoV-2-specific CD8+ T cells. Nat Med 2021; 27 (01) 78-85
  • 92 Lorenzo C, Delgado P, Busse CE. et al. ALDH4A1 is an atherosclerosis auto-antigen targeted by protective antibodies. Nature 2021; 589 (7841): 287-292
  • 93 Davenport P, Tipping PG. The role of interleukin-4 and interleukin-12 in the progression of atherosclerosis in apolipoprotein E-deficient mice. Am J Pathol 2003; 163 (03) 1117-1125
  • 94 Hauer AD, Uyttenhove C, de Vos P. et al. Blockade of interleukin-12 function by protein vaccination attenuates atherosclerosis. Circulation 2005; 112 (07) 1054-1062
  • 95 Mach F, Baigent C, Catapano AL. et al; ESC Scientific Document Group. 2019 ESC/EAS guidelines for the management of dyslipidaemias: lipid modification to reduce cardiovascular risk. Eur Heart J 2020; 41 (01) 111-188
  • 96 McPherson R, Tybjaerg-Hansen A. Genetics of coronary artery disease. Circ Res 2016; 118 (04) 564-578
  • 97 Crossey E, Amar MJA, Sampson M. et al. A cholesterol-lowering VLP vaccine that targets PCSK9. Vaccine 2015; 33 (43) 5747-5755
  • 98 Gaofu Q, Jun L, Xin Y. et al. Vaccinating rabbits with a cholesteryl ester transfer protein (CETP) B-Cell epitope carried by heat shock protein-65 (HSP65) for inducing anti-CETP antibodies and reducing aortic lesions in vivo. J Cardiovasc Pharmacol 2005; 45 (06) 591-598
  • 99 Rittershaus CW, Miller DP, Thomas LJ. et al. Vaccine-induced antibodies inhibit CETP activity in vivo and reduce aortic lesions in a rabbit model of atherosclerosis. Arterioscler Thromb Vasc Biol 2000; 20 (09) 2106-2112
  • 100 Pulendran B, Davis MM. The science and medicine of human immunology. Science 2020; 369 (6511): eaay4014
  • 101 Greenwood B. The contribution of vaccination to global health: past, present and future. Philos Trans R Soc Lond B Biol Sci 2014; 369 (1645): 20130433
  • 102 Moorman CD, Sohn SJ, Phee H. Emerging therapeutics for immune tolerance: tolerogenic vaccines, t cell therapy, and IL-2 therapy. Front Immunol 2021; 12: 657768
  • 103 Han A, Glanville J, Hansmann L, Davis MM. Linking T-cell receptor sequence to functional phenotype at the single-cell level. Nat Biotechnol 2014; 32 (07) 684-692
  • 104 Reed SG, Orr MT, Fox CB. Key roles of adjuvants in modern vaccines. Nat Med 2013; 19 (12) 1597-1608
  • 105 Guimarães LE, Baker B, Perricone C, Shoenfeld Y. Vaccines, adjuvants and autoimmunity. Pharmacol Res 2015; 100: 190-209
  • 106 Kimura T, Tse K, Sette A, Ley K. Vaccination to modulate atherosclerosis. Autoimmunity 2015; 48 (03) 152-160
  • 107 Tse K, Gonen A, Sidney J. et al. Atheroprotective Vaccination with MHC-II Restricted Peptides from ApoB-100. Front Immunol 2013; 4: 493
  • 108 Brunner R, Jensen-Jarolim E, Pali-Schöll I. The ABC of clinical and experimental adjuvants–a brief overview. Immunol Lett 2010; 128 (01) 29-35
  • 109 Khallou-Laschet J, Tupin E, Caligiuri G. et al. Atheroprotective effect of adjuvants in apolipoprotein E knockout mice. Atherosclerosis 2006; 184 (02) 330-341
  • 110 Engman C, Wen Y, Meng WS, Bottino R, Trucco M, Giannoukakis N. Generation of antigen-specific Foxp3+ regulatory T-cells in vivo following administration of diabetes-reversing tolerogenic microspheres does not require provision of antigen in the formulation. Clin Immunol 2015; 160 (01) 103-123
  • 111 Long J, Lin J, Yang X. et al. Nasal immunization with different forms of heat shock protein-65 reduced high-cholesterol-diet-driven rabbit atherosclerosis. Int Immunopharmacol 2012; 13 (01) 82-87
  • 112 van Puijvelde GH, van Es T, van Wanrooij EJ. et al. Induction of oral tolerance to HSP60 or an HSP60-peptide activates T cell regulation and reduces atherosclerosis. Arterioscler Thromb Vasc Biol 2007; 27 (12) 2677-2683
  • 113 Xu Q, Dietrich H, Steiner HJ. et al. Induction of arteriosclerosis in normocholesterolemic rabbits by immunization with heat shock protein 65. Arterioscler Thromb 1992; 12 (07) 789-799
  • 114 George J, Shoenfeld Y, Afek A. et al. Enhanced fatty streak formation in C57BL/6J mice by immunization with heat shock protein-65. Arterioscler Thromb Vasc Biol 1999; 19 (03) 505-510
  • 115 Peikert A, Kaier K, Merz J. et al. Residual inflammatory risk in coronary heart disease: incidence of elevated high-sensitive CRP in a real-world cohort. Clin Res Cardiol 2020; 109 (03) 315-323
  • 116 Walczak A, Szymanska B, Selmaj K. Differential prevention of experimental autoimmune encephalomyelitis with antigen-specific DNA vaccination. Clin Neurol Neurosurg 2004; 106 (03) 241-245
  • 117 Kutzler MA, Weiner DB. DNA vaccines: ready for prime time?. Nat Rev Genet 2008; 9 (10) 776-788
  • 118 Shen Y, Chen J, Zhang X, Wu X, Xu Q. Human TNF-alpha gene vaccination prevents collagen-induced arthritis in mice. Int Immunopharmacol 2007; 7 (09) 1140-1149
  • 119 Hauer AD, van Puijvelde GH, Peterse N. et al. Vaccination against VEGFR2 attenuates initiation and progression of atherosclerosis. Arterioscler Thromb Vasc Biol 2007; 27 (09) 2050-2057
  • 120 Pardi N, Hogan MJ, Porter FW, Weissman D. mRNA vaccines - a new era in vaccinology. Nat Rev Drug Discov 2018; 17 (04) 261-279
  • 121 Krienke C, Kolb L, Diken E. et al. A noninflammatory mRNA vaccine for treatment of experimental autoimmune encephalomyelitis. Science 2021; 371 (6525): 145-153
  • 122 Kimura T, Tse K, McArdle S. et al. Atheroprotective vaccination with MHC-II-restricted ApoB peptides induces peritoneal IL-10-producing CD4 T cells. Am J Physiol Heart Circ Physiol 2017; 312 (04) H781-H790
  • 123 Gistera A, Klement ML, Polyzos KA. et al. LDL-reactive T cells regulate plasma cholesterol levels and development of atherosclerosis in humanized hypercholesterolemic mice. Circulation 2018; 138 (22) 2513-2526
  • 124 Tay C, Liu YH, Kanellakis P. et al. Follicular B cells promote atherosclerosis via T cell-mediated differentiation into plasma cells and secreting pathogenic immunoglobulin G. Arterioscler Thromb Vasc Biol 2018; 38 (05) e71-e84
  • 125 Schiopu A, Bengtsson J, Söderberg I. et al. Recombinant human antibodies against aldehyde-modified apolipoprotein B-100 peptide sequences inhibit atherosclerosis. Circulation 2004; 110 (14) 2047-2052
  • 126 Schiopu A, Frendéus B, Jansson B. et al. Recombinant antibodies to an oxidized low-density lipoprotein epitope induce rapid regression of atherosclerosis in Apobec-1(-/-)/low-density lipoprotein receptor(-/-) mice. J Am Coll Cardiol 2007; 50 (24) 2313-2318
  • 127 Li S, Kievit P, Robertson AK. et al. Targeting oxidized LDL improves insulin sensitivity and immune cell function in obese Rhesus macaques. Mol Metab 2013; 2 (03) 256-269
  • 128 Lehrer-Graiwer J, Singh P, Abdelbaky A. et al. FDG-PET imaging for oxidized LDL in stable atherosclerotic disease: a phase II study of safety, tolerability, and anti-inflammatory activity. JACC Cardiovasc Imaging 2015; 8 (04) 493-494
  • 129 June CH, O'Connor RS, Kawalekar OU, Ghassemi S, Milone MC. CAR T cell immunotherapy for human cancer. Science 2018; 359 (6382): 1361-1365
  • 130 Mullard A. FDA approves first CAR T therapy. Nat Rev Drug Discov 2017; 16 (10) 669
  • 131 Aghajanian H, Kimura T, Rurik JG. et al. Targeting cardiac fibrosis with engineered T cells. Nature 2019; 573 (7774): 430-433
  • 132 Zhao TX, Kostapanos M, Griffiths C. et al. Low-dose interleukin-2 in patients with stable ischaemic heart disease and acute coronary syndromes (LILACS): protocol and study rationale for a randomised, double-blind, placebo-controlled, phase I/II clinical trial. BMJ Open 2018; 8 (09) e022452