Int J Sports Med 2022; 43(11): 931-940
DOI: 10.1055/a-1843-7974
Physiology & Biochemistry

Cardiovagal Modulation in Young and Older Male Adults Following Acute Aerobic Exercise

João Luís Marôco
1   Research & Development Department, GCP Lab, Ginásio Clube Português, Lisboa, Portugal
2   Centro Interdisciplinar de Estudo da Performance Humana, Faculdade de Motricidade Humana, Universidade de Lisboa, Oeiras, Portugal
,
Marco Pinto
3   Instituto de Formação Avançada, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
,
Sérgio Laranjo
4   Instituto de Fisiologia, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
5   Centro Cardiovascular, Universidade de Lisboa, Lisboa, Portugal
,
Helena Santa-Clara
6   Kinesiology, Nutrition, and Rehabilitation, College of Applied Health Sciences, University of Illinois at Chicago, Chicago, United States
,
Bo Fernhall
6   Kinesiology, Nutrition, and Rehabilitation, College of Applied Health Sciences, University of Illinois at Chicago, Chicago, United States
,
Xavier Melo
1   Research & Development Department, GCP Lab, Ginásio Clube Português, Lisboa, Portugal
2   Centro Interdisciplinar de Estudo da Performance Humana, Faculdade de Motricidade Humana, Universidade de Lisboa, Oeiras, Portugal
› Author Affiliations
Funding The authors received no financial support for the research, authorship, and/or publication of this article.

Abstract

We compared response patterns of cardiovagal modulation through heart-rate variability (HRV) and baroreflex sensitivity (BRS) indices at 10 and 60 min after an acute bout of high-intensity interval exercise (HIIE) and moderate-intensity continuous exercise (MICE) in active young and older adults. Twelve young (aged 20–40 years) and older (aged 57–76 years) healthy and active male adults performed an isocaloric acute bout of HIIE, MICE, or a non-exercise condition in a randomized order. HRV and BRS indices were analyzed offline with R-R intervals obtained from a supine position. HIIE decreased natural logarithm (Ln) standard deviation of NN intervals (d=−0.53; 95% CI: −0.77 to −0.30 ms, p<0.001), Ln-root mean square of successive differences (d=−0.85; 95% CI: −1.09 to −0.61 ms, p<0.001), Ln-high-frequency power (d=−1.60; 95% CI: −2.11 to −1.10 ms2; p<0.001), and BRS (d=−6.28; 95% CI: −8.91 to −3.64 ms/mmHg, p<0.001) after exercise in young and older adults, whereas MICE did not. Indices returned to baseline after 60 min. We found no evidence of age-associated response patterns in HRV or BRS to a single bout HIIE or MICE in active participants. HIIE reduced cardiovagal modulation in active young and older adults, returning to baseline values 60 min into recovery.

Supplementary Material



Publication History

Received: 29 May 2021

Accepted: 03 May 2022

Accepted Manuscript online:
04 May 2022

Article published online:
27 June 2022

© 2022. Thieme. All rights reserved.

Georg Thieme Verlag
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Almeida-Santos MA, Barreto-Filho JA, Oliveira JLM. et al. Aging, heart rate variability and patterns of autonomic regulation of the heart. Arch Gerontol Geriatr 2016; 63: 1-8 DOI: 10.1016/j.archger.2015.11.011.
  • 2 Jandackova VK, Scholes S, Britton A. et al. Are changes in heart rate variability in middle-aged and older people normative or caused by pathological conditions? Findings from a large population-based longitudinal cohort study. J Am Heart Assoc 2016; 5 e002365
  • 3 Tsuji H, Larson MG, Venditti FJ. et al. Impact of reduced heart rate variability on risk for cardiac events. Circulation 1996; 94: 2850-2855
  • 4 Dekker J, Schouten E, Klootwijk P. et al. Heart rate variability from short electrocardiographic recordings predicts mortality from all causes in middle-aged and elderly men. Am J Epidemiol 1997; 145: 899-908
  • 5 La Rovere MT, Bigger JT, Marcus FI. et al. Baroreflex sensitivity and heart-rate variability in prediction of total cardiac mortality after myocardial infarction. Lancet 1998; 351: 478-484
  • 6 Buchheit M, Simon C, Viola AU. et al. Heart rate variability in sportive elderly: relationship with daily physical activity. Med Sci Sports Exerc 2004; 36: 601-605
  • 7 Buchheit M, Simon C, Charloux A. et al. Heart rate variability and intensity of habitual physical activity in middle-aged persons. Med Sci Sports Exerc 2005; 37: 1530-1534
  • 8 Davy KP, Desouza CA, Jones PP. et al. Elevated heart rate variability in physically active young and older adult women. Clin Sci 1998; 94: 579-584
  • 9 Seals DR, Monahan KD, Bell C. et al. The aging cardiovascular system: Changes in autonomic function at rest and in response to exercise. Int J Sport Nutr 2001; 11: 189-195
  • 10 Levy WC, Cerqueira MD, Harp GD. et al. Effect of endurance exercise training on heart rate variability at rest in healthy young and older men. Am J Cardiol 1998; 82: 1236-1241
  • 11 Pichot V, Roche F, Denis C. et al. Interval training in elderly men increases both heart rate variability and baroreflex activity. Clin Auton Res 2005; 15: 107-115
  • 12 Albinet CT, Boucard G, Bouquet CA. et al. Increased heart rate variability and executive performance after aerobic training in the elderly. Eur J Appl Physiol 2010; 109: 617-624
  • 13 McKune AJ, Peters B, Ramklass SS. et al. Autonomic cardiac regulation, blood pressure and cardiorespiratory fitness responses to different training doses over a 12 week group program in the elderly. Arch Gerontol Geriatr 2017; 70: 130-135
  • 14 Uusitalo ALT, Laitinen T, Väisänen SB. et al. Physical training and heart rate and blood pressure variability: A 5-yr randomized trial. Am J Physiol Heart Circ Physiol 2004; 286: H1821-H1826
  • 15 Niemela N, Kiviniemi A, Hautala A. et al. Recovery pattern of baroreflex sensitivity. Med Sci Sports Exerc 2008; 40: 864-870
  • 16 Kaikkonen P, Rusko H, Martinmaki K. Post-exercise heart rate variability of endurance athletes after different high-intensity exercise interventions. Scand J Med Sci Sports 2008; 18: 511-519
  • 17 Michael S, Jay O, Halaki M. et al. Submaximal exercise intensity modulates acute post-exercise heart rate variability. Eur J Appl Physiol 2016; 116: 697-706
  • 18 Michael S, Jay O, Graham KS. et al. Higher exercise intensity delays postexercise recovery of impedance-derived cardiac sympathetic activity. Appl Physiol Nutr Metab 2017; 42: 834-840
  • 19 Raven PB, Fadel PJ, Ogoh S. Arterial baroreflex resetting during exercise: A current perspective. Exp Physiol 2006; 91: 37-49
  • 20 Michael S, Graham K, Oam G. Cardiac autonomic responses during exercise and post-exercise recovery using heart rate variability and systolic time intervals: A review. Front Physiol 2017; 8: 301
  • 21 Stanley J, Peake JM, Buchheit M. Cardiac parasympathetic reactivation following exercise: Implications for training prescription. Sports Med 2013; 43: 1259-1277
  • 22 Thompson PD, Crouse SF, Goodpaster B. et al. The acute versus the chronic response to exercise. Med Sci Sports Exerc 2001; 33: 438-445
  • 23 Kiviniemi A, Tulppo MP, Eskelinen JJ. et al. Autonomic function predicts fitness response to short-term high-intensity interval training. Int J Sports Med 2015; 36: 915-921
  • 24 Ferreira MLV, Sardeli AV, De Souza GV. et al. Cardiac autonomic and haemodynamic recovery after a single session of aerobic exercise with and without blood flow restriction in older adults. J Sports Sci 2017; 35: 2412-2420
  • 25 Bentley RF, Vecchiarelli E, Banks L. et al. Heart rate variability and recovery following maximal exercise in endurance athletes and physically active individuals. Appl Physiol Nutr Metab 2020; 45: 1138-1144
  • 26 Harriss DJ, Macsween A, Atkinson G. Ethical standards in sport and exercise science research: 2020 update. Int J Sports Med 2019; 40: 813-817
  • 27 Ramírez-Vélez R, Hernández-Quiñones PA, Tordecilla-Sanders A. et al. Effectiveness of HIIT compared to moderate continuous training in improving vascular parameters in inactive adults. Lipids Health Dis 2019; 18: 42
  • 28 Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Heart rate variability: standards of measurement, physiological interpretation and clinical use. Circulation 1996; 93: 1043-1065
  • 29 Tavares C, Martins RC, Laranjo S. et al. Computational tools for assessing cardiovascular variability. In: 1st Portuguese Biomedical Engineering Meeting. IEEE; 2011
  • 30 Wu L, Shi P, Yu H. et al. An optimization study of the ultra-short period for HRV analysis at rest and post-exercise. J Electrocardiol 2020; 63: 57-63 DOI: 10.1016/j.jelectrocard.2020.10.002.
  • 31 Shaffer F, Ginsberg JP. An overview of heart rate variability metrics and norms. Front Public Heal 2017; 5: 258
  • 32 Belova NY, Mihaylov SV., Piryova BG. Wavelet transform: A better approach for the evaluation of instantaneous changes in heart rate variability. Auton Neurosci 2007; 131: 107-122
  • 33 Porszasz J, Casaburi R, Somfay A. et al. A treadmill ramp protocol using simultaneous changes in speed and grade. Med Sci Sports Exerc 2003; 35: 1596-1603
  • 34 Bakdash JZ, Marusich LR. rmcorr: Repeated Measures Correlation. 2020; R package. Available from: https://cran.r-project.org/package=rmcorr
  • 35 Gamer M, Lemon J, Singh I. irr:Various Coefficients of Interrater Reliability and Agreement. 2019; R package
  • 36 Koo TK, Li MY. A guideline of selecting and reporting intraclass correlation coefficients for reliability research. J Chiropr Med 2016; 15: 155-163 DOI: 10.1016/j.jcm.2016.02.012.
  • 37 Kuznetsova A, Brockhoff PB, Christensen RHB. lmerTest package: tests in linear mixed effects models. J Stat Softw 2017; 82: 1-26 DOI: 10.18637/jss.v082.i13.
  • 38 Lüdecke D. Statistical Functions for Regression Models. 2020; available from: https://cran.r-project.org/package=sjstats
  • 39 Cohen J. Statistical power analysis for the behavioral sciences. New York: Routledge Academic,; 1988. http://library1.nida.ac.th/termpaper6/sd/2554/19755.pdf
  • 40 Lenth R. emmeans: Estimated Marginal Means, aka Least-Squares Means. 2020; R package version 0.9.6. Available from: https://cran.r-project.org/package=emmeans
  • 41 R Core Team. R: A Language and Environment for Statistical Computing. R Found Stat Comput. 2020 Vienna. Available from: https://www.r-project.org/
  • 42 Agelink MW, Majewski T, Akila F. et al. Standardized tests of heart rate variability: normal ranges obtained from 309 healthy humans, and effects of age, gender, and heart rate. Clin Auton Res 2001; 11: 99-108
  • 43 Franck R, Bønaa KH, Huikuri HV. et al. Determinants of cardiac vagal regulation: A cross-sectional study in a general population. Auton Neurosci 2011; 162: 54-59 DOI: 10.1016/j.autneu.2011.03.005.
  • 44 Madden KM, Levy WC, Stratton JR. Aging Affects the Response of Heart Rate Variability Autonomic Indices to Atropine and Isoproteronol. Clin Med Insights Geriatr 2008; 1: 17-25
  • 45 Zulfiqar U, Jurivich DA, Gao W. et al. Relation of high heart rate variability to healthy longevity. Am J Cardiol 2010; 105: 1181-1185 DOI: 10.1016/j.amjcard.2009.12.022.
  • 46 Monahan KD, Dinenno FA, Tanaka H. et al. Regular aerobic exercise modulates age-associated declines in cardiovagal baroreflex sensitivity in healthy men. J Physiol 2000; 529: 263-271
  • 47 Deley G, Picard G, Taylor JA. Arterial baroreflex control of cardiac vagal outflow in older individuals can be enhanced by aerobic exercise training. Hypertension 2009; 53: 826-832
  • 48 Lakatta EG, Levy D. Arterial and cardiac aging: Major shareholders in cardiovascular disease enterprises: Part II: The aging heart in health: Links to heart disease. Circulation 2003; 107: 346-354
  • 49 Hunt BE, Farquhar WB, Taylor JA. Does reduced vascular stiffening fully explain preserved cardiovagal baroreflex function in older, physically active men?. Circulation 2001; 103: 2424-2427
  • 50 Kaikkonen P, Nummela A, Rusko H. Heart rate variability dynamics during early recovery after different endurance exercises. Eur J Appl Physiol 2007; 102: 79-86
  • 51 Reynolds LJ, Croix MBADS, James DVB. et al. The influence of exercise intensity on postexercise baroreflex sensitivity. Res Q Exerc Sport 2017; 88: 36-43
  • 52 Silva LEV, Dias DPM, Da Silva CAA. et al. Revisiting the sequence method for baroreflex analysis. Front Neurosci 2019; 13: 17
  • 53 Buchheit M, Laursen PB, Ahmaidi S. Parasympathetic reactivation after repeated sprint exercise. Am J Physiol Heart Circ Physiol 2007; 293: H133-H141
  • 54 Wells GD, Selvadurai H, Tein I. Bioenergetic provision of energy for muscular activity. Paediatr Respir Rev 2009; 10: 83-90
  • 55 Sala-Mercado JA, Ichinose M, Hammond RL. et al. Muscle metaboreflex attenuates spontaneous heart rate baroreflex sensitivity during dynamic exercise. Am J Physiol Hear Circ Physiol 2007; 292: H2867-H2873
  • 56 Kiviniemi AM, Tulppo MP, Eskelinen JJ. et al. Cardiac autonomic function and high-intensity interval training in middle-age men. Med Sci Sports Exerc 2014; 46: 1960-1967
  • 57 Leak RK, Calabrese EJ, Kozumbo WJ. et al. Enhancing and extending biological performance and resilience. Dose Response 2018; 16 1559325818784501
  • 58 Buchheit M, Laursen PB, Al Haddad H. et al. Exercise-induced plasma volume expansion and post-exercise parasympathetic reactivation. Eur J Appl Physiol 2009; 105: 471-481
  • 59 Saitoh T, Ogawa Y, Aoki K. et al. Bell-shaped relationship between central blood volume and spontaneous baroreflex function. Auton Neurosci 2008; 143: 46-52 DOI: 10.1016/j.autneu.2008.07.011.
  • 60 Berntson G, Bigger J, Eckberg D. et al. Heart rate variability: origins, methods, and interpretive caveats. Psychophysiology 1997; 34: 623-648
  • 61 Ellis RJ, Zhu B, Koenig J. et al. A careful look at ECG sampling frequency and R-peak interpolation on short-term measures of heart rate variability. Physiol Meas 2015; 36: 1827-1852 DOI: 10.1088/0967-3334/36/9/1827.