CC BY-NC-ND 4.0 · Planta Med 2023; 89(06): 637-662
DOI: 10.1055/a-1955-4624
Natural Product Chemistry & Analytical Studies
Reviews

Phyllobilins – Bioactive Natural Products Derived from Chlorophyll – Plant Origins, Structures, Absorption Spectra, and Biomedical Properties

Cornelia A. Karg
1   Department of Pharmacy, Pharmaceutical Biology, Ludwig-Maximilian University of Munich, Germany
,
Masahiko Taniguchi
2   Department of Chemistry, North Carolina State University, Raleigh, USA
,
Jonathan S. Lindsey
2   Department of Chemistry, North Carolina State University, Raleigh, USA
,
1   Department of Pharmacy, Pharmaceutical Biology, Ludwig-Maximilian University of Munich, Germany
› Author Affiliations
Supported by: Division of Chemcal Sciences, Geosciences and Biosciences, Office of Basic Energy Sciences of the U.S. Department of Energy DE-FG02-05ER15661
Supported by: Deutsche Forschungsgemeinschaft 448289381

Abstract

Phyllobilins are open-chain products of the biological degradation of chlorophyll a in higher plants. Recent studies reveal that phyllobilins exert anti-oxidative and anti-inflammatory properties, as well as activities against cancer cells, that contribute to the human health benefits of numerous plants. In general, phyllobilins have been overlooked in phytochemical analyses, and – more importantly – in the analyses of medicinal plant extracts. Nevertheless, over the past three decades, > 70 phyllobilins have been identified upon examination of more than 30 plant species. Eight distinct chromophoric classes of phyllobilins are known: phyllolumibilins (PluBs), phylloleucobilins (PleBs), phylloxanthobilins (PxBs), and phylloroseobilins (PrBs)–each in type-I or type-II groups. Here, we present a database of absorption and fluorescence spectra that has been compiled of 73 phyllobilins to facilitate identification in phytochemical analyses. The spectra are provided in digital form and can be viewed and downloaded at www.photochemcad.com. The present review describes the plant origin, molecular structure, and absorption and fluorescence features of the 73 phyllobilins, along with an overview of key medicinal properties. The review should provide an enabling tool for the community for the straightforward identification of phyllobilins in plant extracts, and the foundation for deeper understanding of these ubiquitous but underexamined plant-derived micronutrients for human health.



Publication History

Received: 27 June 2022

Accepted after revision: 04 September 2022

Accepted Manuscript online:
05 October 2022

Article published online:
08 December 2022

© 2022. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commecial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Hörtensteiner S, Kräutler B. Chlorophyll breakdown in higher plants. Biochim Biophys Acta 2011; 1807: 977-988
  • 2 Hendry GAF, Houghton JD, Brown SB. The degradation of chlorophyll – a biological enigma. New Phytol 1987; 107: 255-302
  • 3 Kräutler B, Hörtensteiner S. Chlorophyll Breakdown: Chemistry, Biochemistry, and Biology. In: Ferreira GC, Kadish KM, Smith KM, Guilard R. eds. Handbook of Porphyrin Science (Volume 28). New Jersey: World Scientific; 2014: 117-185
  • 4 Tanaka R, Tanaka A. Chlorophyll cycle regulates the construction and destruction of the light-harvesting complexes. Biochim Biophys Acta 2011; 1807: 968-976
  • 5 Wang P, Karg CA, Frey N, Frädrich J, Vollmar AM, Moser S. Phyllobilins as a challenging diverse natural product class: Exploration of pharmacological activities. Arch Pharm 2021; 354: 2100061
  • 6 Moser S. Chlorophyllkataboliten in der Modellpflanze Arabidopsis thaliana [Diploma Thesis]. University Innsbruck: Institute of Organic Chemistry; 2005
  • 7 Karg CA, Doppler C, Schilling C, Jakobs F, Dal Colle MCS, Frey N, Bernhard D, Vollmar AM, Moser S. A yellow chlorophyll catabolite in leaves of Urtica dioica L.: An overlooked phytochemical that contributes to health benefits of stinging nettle. Food Chem 2021; 359: 129906
  • 8 Karg CA, Wang P, Vollmar AM, Moser S. Re-opening the stage for Echinacea research – Characterization of phylloxanthobilins as a novel anti-oxidative compound class in Echinacea purpurea . Phytomedicine 2019; 60: 152969
  • 9 Hörtensteiner S, Vicentini F, Matile P. Chlorophyll breakdown in senescent cotyledons of rape, Brassica napus L.: Enzymatic cleavage of phaeophorbide a in vitro . New Phytol 1995; 129: 237-246
  • 10 Mühlecker W, Ongania KH, Kräutler B, Matile P, Hörtensteiner S. Tracking down chlorophyll breakdown in plants: Elucidation of the constitution of a “fluorescent” chlorophyll catabolite. Angew Chem Int Ed Engl 1997; 36: 401-404
  • 11 Pružinská A, Anders I, Aubry S, Schenk N, Tapernoux-Lüthi E, Müller T, Kräutler B, Hörtensteiner S. In vivo participation of red chlorophyll catabolite reductase in chlorophyll breakdown. Plant Cell 2007; 19: 369-387
  • 12 Christ B, Süssenbacher I, Moser S, Bichsel N, Egert A, Müller T, Kräutler B, Hörtensteiner S. Cytochrome P450 CYP89A9 is involved in the formation of major chlorophyll catabolites during leaf senescence in Arabidopsis . Plant Cell 2013; 25: 1868-1880
  • 13 Moser S, Müller T, Ebert MO, Jockusch S, Turro NJ, Kräutler B. Blue luminescence of ripening bananas. Angew Chem Int Ed Engl 2008; 47: 8954-8957
  • 14 Oberhuber M, Berghold J, Breuker K, Hörtensteiner S, Kraütler B. Breakdown of chlorophyll: a nonenzymatic reaction accounts for the formation of the colorless “nonfluorescent” chlorophyll catabolites. Proc Natl Acad Sci U S A 2003; 100: 6910-6915
  • 15 Li C, Erhart T, Liu X, Kräutler B. Yellow dioxobilin–Type tetrapyrroles from chlorophyll breakdown in higher plants–A new class of colored phyllobilins. Chem Eur J 2019; 25: 4052-4057
  • 16 Moser S, Ulrich M, Muller T, Krautler B. A yellow chlorophyll catabolite is a pigment of the fall colours. Photochem Photobiol Sci 2008; 7: 1577-1581
  • 17 Vergeiner C, Ulrich M, Li C, Liu X, Müller T, Kräutler B. Stereo- and regioselective phyllobilane oxidation in leaf homogenates of the peace lily (Spathiphyllum wallisii): Hypothetical endogenous path to yellow chlorophyll catabolites. Chem Eur J 2015; 21: 136-149
  • 18 Ulrich M, Moser S, Müller T, Kräutler B. How the colourless ‘nonfluorescent’ chlorophyll catabolites rust. Chem Eur J 2011; 17: 2330-2334
  • 19 Li C, Ulrich M, Liu X, Wurst K, Müller T, Kräutler B. Blue transition metal complexes of a natural bilin-type chlorophyll catabolite. Chem Sci 2014; 5: 3388-3395
  • 20 Li C, Kräutler B. A pink colored dioxobilin-type phyllobilin from breakdown of chlorophyll. Monatsh Chem 2019; 150: 813-820
  • 21 Mittelberger C, Yalcinkaya H, Pichler C, Gasser J, Scherzer G, Erhart T, Schumacher S, Holzner B, Janik K, Robatscher P, Müller T, Kräutler B, Oberhuber M. Pathogen-induced leaf chlorosis: Products of chlorophyll breakdown found in degreened leaves of phytoplasma-infected apple (Malus × domestica Borkh.) and apricot (Prunus armeniaca L.) trees relate to the pheophorbide a oxygenase/phyllobilin pathway. J Agric Food Chem 2017; 65: 2651-2660
  • 22 Kräutler B. Phyllobilins – the abundant tetrapyrrolic catabolites of the green plant pigment chlorophyll. Chem Soc Rev 2014; 43: 6227-6238
  • 23 Hörtensteiner S, Hauenstein M, Kräutler B. Chlorophyll Breakdown–Regulation, Biochemistry and Phyllobilins as its Products. In: Grimm B. ed. Metabolism, Structure and Function of Plant Tetrapyrroles: Introduction, Microbial and Eukaryotic Chlorophyll Synthesis and Catabolism. Advances in Botanical Research, vol. 90. London: Elsevier; 2019: 213-271
  • 24 Jockusch S, Kräutler B. The red chlorophyll catabolite (RCC) is an inefficient sensitizer of singlet oxygen – photochemical studies of the methyl ester of RCC. Photochem Photobiol Sci 2020; 19: 668-673
  • 25 Mühlecker W, Kräutler B, Moser D, Matile P, Hörtensteiner S. Breakdown of chlorophyll: A fluorescent chlorophyll catabolite from sweet pepper (Capsicum annuum). Helv Chim Acta 2000; 83: 278-286
  • 26 Erhart T, Mittelberger C, Liu X, Podewitz M, Li C, Scherzer G, Stoll G, Valls J, Robatscher P, Liedl KR. Novel types of hypermodified fluorescent phyllobilins from breakdown of chlorophyll in senescent leaves of grapevine (Vitis vinifera). Chem Eur J 2018; 24: 17268-17279
  • 27 Christ B, Schelbert S, Aubry S, Süssenbacher I, Müller T, Kräutler B, Hörtensteiner S. MES16, a member of the methylesterase protein family, specifically demethylates fluorescent chlorophyll catabolites during chlorophyll breakdown in Arabidopsis . Plant Physiol 2012; 158: 628-641
  • 28 Roca M, Pérez-Gálvez A. Profile of chlorophyll catabolites in senescent leaves of Epipremnun aureum includes a catabolite esterified with hydroxytyrosol 1-O-glucoside. J Nat Prod 2020; 83: 873-880
  • 29 Moser S, Müller T, Holzinger A, Lütz C, Kräutler B. Structures of chlorophyll catabolites in bananas (Musa acuminata) reveal a split path of chlorophyll breakdown in a ripening fruit. Chem Eur J 2012; 18: 10873-10885
  • 30 Curty C, Engel N. Detection, isolation and structure elucidation of a chlorophyll a catabolite from autumnal senescent leaves of Cercidiphyllum japonicum . Phytochem 1996; 42: 1531-1536
  • 31 Karg CA, Wang P, Kluibenschedl F, Müller T, Allmendinger L, Vollmar AM, Moser S. Phylloxanthobilins are abundant linear tetrapyrroles from chlorophyll breakdown with activities against cancer cells. Eur J Org Chem 2020; 2020: 4499-4509
  • 32 Müller T, Ulrich M, Ongania KH, Kräutler B. Colorless tetrapyrrolic chlorophyll catabolites found in ripening fruit are effective antioxidants. Angew Chem Int Ed Engl 2007; 46: 8699-8702
  • 33 Moser S, Erhart T, Neuhauser S, Kräutler B. Phyllobilins from senescence-associated chlorophyll breakdown in the leaves of Basil (Ocimum basilicum) show increased abundance upon herbivore attack. J Agric Food Chem 2020; 68: 7132-7142
  • 34 Scherl M, Müller T, Kreutz CR, Huber RG, Zass E, Liedl KR, Kräutler B. Chlorophyll catabolites in fall leaves of the wych elm tree present a novel glycosylation motif. Chem Eur J 2016; 22: 9498-9503
  • 35 Pružinská A, Tanner G, Aubry S, Anders I, Moser S, Müller T, Ongania KH, Kräutler B, Youn JY, Liljegren SJ. Chlorophyll breakdown in senescent Arabidopsis leaves. Characterization of chlorophyll catabolites and of chlorophyll catabolic enzymes involved in the degreening reaction. Plant Physiol 2005; 139: 52-63
  • 36 Müller T, Moser S, Ongania KH, Pruzinska A, Hörtensteiner S, Kräutler B. A divergent path of chlorophyll breakdown in the model plant Arabidopsis thaliana . Chembiochem 2006; 7: 40-42
  • 37 Roiser MH, Müller T, Kräutler B. Colorless chlorophyll catabolites in senescent florets of broccoli (Brassica oleracea var. italica). J Agric Food Chem 2015; 63: 1385-1392
  • 38 Li C, Wurst K, Jockusch S, Gruber K, Podewitz M, Liedl KR, Kräutler B. Chlorophyll-derived yellow phyllobilins of higher plants as medium-responsive chiral photoswitches. Angew Chem Int Ed Engl 2016; 55: 15760-15765
  • 39 Li C, Wurst K, Berghold J, Podewitz M, Liedl KR, Kräutler B. Pyro-phyllobilins: Elusive chlorophyll catabolites lacking a critical carboxylate function of the natural chlorophylls. Chem Eur J 2018; 24: 2987-2998
  • 40 Li C, Kräutler B. Transition metal complexes of phyllobilins – a new realm of bioinorganic chemistry. Dalton Trans 2015; 44: 10116-10127
  • 41 Süssenbacher I, Hörtensteiner S, Kräutler B. A dioxobilin-type fluorescent chlorophyll catabolite as a transient early intermediate of the dioxobilin-branch of chlorophyll breakdown in Arabidopsis thaliana . Angew Chem Int Ed Engl 2015; 54: 13777-13781
  • 42 Süssenbacher I, Christ B, Hoertensteiner S, Kräutler B. Hydroxymethylated phyllobilins: A puzzling new feature of the dioxobilin branch of chlorophyll breakdown. Chem Eur J 2014; 20: 87-92
  • 43 Müller T, Rafelsberger M, Vergeiner C, Kräutler B. A dioxobilane as product of a divergent path of chlorophyll breakdown in Norway maple. Angew Chem Int Ed Engl 2011; 50: 10724-10727
  • 44 Süssenbacher I, Kreutz CR, Christ B, Hörtensteiner S, Kräutler B. Hydroxymethylated dioxobilins in senescent Arabidopsis thaliana leaves: sign of a puzzling biosynthetic intermezzo of chlorophyll breakdown. Chem Eur J 2015; 21: 11664-11670
  • 45 Karg CA, Schilling CM, Allmendinger L, Moser S. Isolation, characterization, and antioxidative activity of a dioxobilin-type phylloxanthobilin from savoy cabbage. J Porphyr Phthalocyanines 2019; 23: 881-888
  • 46 Li C, Podewitz M, Kräutler B. A blue zinc complex of a dioxobilin-type pink chlorophyll catabolite exhibiting bright chelation-enhanced red fluorescence. Eur J Inorg Chem 2021; 2021: 1903
  • 47 Erhart T, Vergeiner S, Kreutz C, Kräutler B, Müller T. Chlorophyll breakdown in a fern–Discovery of phyllobilin isomers with a rearranged carbon skeleton. Angew Chem Int Ed Engl 2018; 57: 14937-14941
  • 48 Li C, Kräutler B. Facile retro-Dieckmann cleavage of a pink phyllobilin: New type of potential downstream steps of natural chlorophyll breakdown. Monatsh Chem 2022; DOI: 10.1007/s00706-022-02894-z.
  • 49 Taniguchi M, Lindsey JS. Absorption and fluorescence spectral database of chlorophylls and analogues. Photochem Photobiol 2021; 97: 136-165
  • 50 Taniguchi M, Du H, Lindsey JS. PhotochemCAD 3: Diverse modules for photophysical calculations with multiple spectral databases. Photochem Photobiol 2018; 94: 277-289
  • 51 Taniguchi M, Lindsey JS. Absorption and fluorescence spectra of organic compounds from 40 sources: Archives, repositories, databases, and literature search engines. SPIE BiOS 2020; 112560J DOI: 10.1117/12.2542859.
  • 52 Taniguchi M, Lindsey JS. Database of absorption and fluorescence spectra of > 300 common compounds for use in PhotochemCAD. Photochem Photobiol 2018; 94: 290-327
  • 53 Taniguchi M, Bocian DF, Holten D, Lindsey JS. Beyond green with synthetic chlorophylls – Connecting structural features with spectral properties. J Photochem Photobiol C Photochem Rev 2022; 52: 100513
  • 54 OʼDonnell TJ, Gurr JR, Dai J, Taniguchi M, Williams PG, Lindsey JS. Tolyporphins A–R, unusual tetrapyrrole macrocycles in a cyanobacterium from Micronesia, assessed quantitatively from the culture HT-58-2. New J Chem 2021; 45: 11481-11494
  • 55 Oberhuber M, Berghold J, Kräutler B. Chlorophyll breakdown by a biomimetic route. Angew Chem Int Ed Engl 2008; 47: 3057-3061
  • 56 Jockusch S, Turro NJ, Banala S, Kräutler B. Photochemical studies of a fluorescent chlorophyll catabolite – source of bright blue fluorescence in plant tissue and efficient sensitizer of singlet oxygen. Photochem Photobiol Sci 2014; 13: 407-411
  • 57 Moser S, Müller T, Oberhuber M, Kräutler B. Chlorophyll catabolites–chemical and structural footprints of a fascinating biological phenomenon. Eur J Inorg Chem 2009; 2009: 21-31
  • 58 Li C, Kräutler B. Zn-complex of a natural yellow chlorophyll catabolite. J Porphyr Phthalocyanines 2016; 20: 388-396
  • 59 Atkinson JH, Atkinson RS, Johnson AW. The structure and reactions of some pyrrolin-2-ones. J Chem Soc 1964; 5999-6009 DOI: 10.1039/JR9640005999.
  • 60 Struchkova MI, Gusarov AN, Dvoryantseva GG, Evstigneeva RP, Ioslovich NV, Kabankin AS, Kaganskii MM, Landau MA. Electronic spectra and structure of conjugate acids of carbonyl derivatives of pyrrole. Chem Heterocycl Compd 1977; 13: 985-991
  • 61 Eisner U, Gore PH. 186. The light absorption of pyrroles. Part I. Ultraviolet spectra. J Chem Soc 1958; 922-927 DOI: 10.1039/JR9580000922.
  • 62 Reddy KR, Lubian E, Pavan MP, Kim HJ, Yang E, Holten D, Lindsey JS. Synthetic bacteriochlorins with integral spiro-piperidine motifs. New J Chem 2013; 37: 1157-1173
  • 63 Boiadjiev SE, Lightner DA. A water-soluble synthetic bilirubin with carboxyl groups replaced by sulfonyl moieties. Monatsh Chem 2001; 132: 1201-1212
  • 64 Braslavsky SE, Schneider D, Heihoff K, Nonell S, Aramendia PF, Schaffner K. Phytochrome models. 11. Photophysics and photochemistry of phycocyanobilin dimethyl ester. J Am Chem Soc 1991; 113: 7322-7334
  • 65 Eichinger D, Falk H. Beiträge zur Chemie der Pyrrolpigmente, 68. Mitt. Zum Kationentransport mit tripyrrinoiden Ionophoren. Monatsh Chem 1987; 118: 91-103
  • 66 Kräutler B. Breakdown of chlorophyll in higher plants–Phyllobilins as abundant, yet hardly visible signs of ripening, senescence, and cell death. Angew Chem Int Ed Engl 2016; 55: 4882-4907
  • 67 Kräutler B, Mühlecker W, Anderl M, Gerlach B. Breakdown of chlorophyll: Partial synthesis of a putative intermediary catabolite. Preliminary communication. Helv Chim Acta 1997; 80: 1355-1362
  • 68 Kuai B, Chen J, Hörtensteiner S. The biochemistry and molecular biology of chlorophyll breakdown. J Exp Bot 2017; 69: 751-767
  • 69 Hauenstein M, Christ B, Das A, Aubry S, Hörtensteiner S. A role for TIC55 as a hydroxylase of phyllobilins, the products of chlorophyll breakdown during plant senescence. Plant Cell 2016; 28: 2510-2527
  • 70 Berghold J, Breuker K, Oberhuber M, Hörtensteiner S, Kräutler B. Chlorophyll breakdown in spinach: On the structure of five nonfluorescent chlorophyll catabolites. Photosynth Res 2002; 74: 109-119
  • 71 Wienkoop S, Baginsky S, Weckwerth W. Arabidopsis thaliana as a model organism for plant proteome research. J Proteomics 2010; 73: 2239-2248
  • 72 Christ B, Hauenstein M, Hörtensteiner S. A liquid chromatography–mass spectrometry platform for the analysis of phyllobilins, the major degradation products of chlorophyll in Arabidopsis thaliana . Plant J 2016; 88: 505-518
  • 73 Kräutler B, Jaun B, Matile P, Bortlik K, Schellenberg M. On the enigma of chlorophyll degradation: The constitution of a secoporphinoid catabolite. Angew Chem Int Ed Engl 1991; 30: 1315-1318
  • 74 Erhart T, Mittelberger C, Vergeiner C, Scherzer G, Holzner B, Robatscher P, Oberhuber M, Kräutler B. Chlorophyll catabolites in senescent leaves of the plum tree (Prunus domestica). Chem Biodivers 2016; 13: 1441-1453
  • 75 Karg CA, Wang S, Al Danaf N, Pemberton RP, Bernard D, Kretschmer M, Schneider S, Zisis T, Vollmar AM, Lamb DC, Zahler S, Moser S. Tetrapyrrolic pigments from heme- and chlorophyll breakdown are actin-targeting compounds. Angew Chem Int Ed Engl 2021; 60: 22578-22584
  • 76 Berezin MB, Antina EV, Guseva GB, Kritskaya AY, Semeikin AS. Effect of meso-phenyl substitution on spectral properties, photo- and thermal stability of boron (III) and zinc (II) dipyrrometenates. Inorg Chem Commun 2020; 111: 107611