Osteologie 2023; 32(03): 196-201
DOI: 10.1055/a-2070-7512
Übersicht

Stellenwert ausgewählter Trainingsprinzipien innerhalb eines körperlichen Trainings zur Frakturprophylaxe

Relevance of Selected Training Principles in the Field of Exercise and Fracture Prevention
Simon von Stengel
1   Institut für Radiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Deutschland
,
Matthias Kohl
2   Department of Medical and Life Sciences, Hochschule Furtwangen – Campus Villingen-Schwenningen, Villingen-Schwenningen, Deutschland
,
Franz Jakob
3   Bernhard-Heine-Centrum für Bewegungsforschung, Julius-Maximilians-Universität Würzburg, Würzburg, Deutschland
,
Katharina Kerschan-Schindl
4   Physikalische Medizin und Rehabilitation, Universität Wien, Wien, Österreich
,
Uwe Lange
5   Physikalische Medizin und Osteologie, Kerckhoff-Klinik GmbH, Bad Nauheim, Deutschland
,
Stefan Peters
6   Deutscher Verband für Gesundheitssport und Sporttherapie e.V., Hürth, Deutschland
,
Friederike Thomasius
7   Frankfurter Hormon- und Osteoporosezentrum, Frankfurt, Deutschland
,
Michael Uder
1   Institut für Radiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Deutschland
,
Michael Fröhlich
8   Department Sportwissenschaften, Rheinland-Pfälzische Technische Universität Kaiserslautern-Landau, Kaiserslautern, Deutschland
,
Daniel Schöne
9   Institut für Medizinische Physik, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Deutschland
,
1   Institut für Radiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Deutschland
9   Institut für Medizinische Physik, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Deutschland
,
Mahdieh Shojaa
10   Institute of Health Science, Universitätsklinikum Tübingen, Tübingen, Deutschland
› Author Affiliations

Zusammenfassung

Trainingsprinzipien werden als konkrete und leitende Handlungsanweisung für ein körperliches Training angesehen und beziehen sich auf alle übergeordeten Aspekte des Trainings weitestgehend unabhängig von der fokussierten Zielgröße. Relevanz für Gresundheits- und Rehabilitationssport haben primär Prinzipien zur Auslösung und Sicherung von Anpassungseffekten. Während das Prinzip des überschwelligen Reizes und dessen Aufrechterhaltung („progressive overload“) im gesundheitsorientierten Trainingsprozess meist Berücksichtigung findet, werden Trainingsprinzipien, die in Zusammenhang mit der Spezifität, Individualisierung und Variation stehen sehr oft nicht oder nicht mit der nötigen Aufmerksamkeit adressiert. Insbesondere eine hohe Spezifität des Trainings u. a. im Sinne der Auswahl geeigneter Trainingsinhalte zur Realisierung des dezidierten Trainingszieles sowie eine hoher Individualisierungsgrad u. a. durch Vorgabe relevanter Trainingsziele und Monitoring der individuellen Leistungsentwicklung sind Schlüsselgrößen erfolgreicher Trainingsprotokolle. Eine kontinuierliche Trainingsdurchführung mit Detrainingsphasen von weniger als 4–6 Wochen, sollte bei einem körperlichen Training zur Frakturprophylaxe ebenfalls Berücksichtigung finden. Schließlich können bewährte Trainingsprinzipien des Leistungssports die mit Periodisierung/Zyklisierung in Verbindung stehen relativ unproblematisch und sinnvoll in gesundheitsorientierten Trainingsprogrammen Verwendung finden.

Abstract

Training principles are regarded as specific guidelines for physical exercise training and cover all superordinate aspects of training, largely independent of the addressed outcome. Relevant for non-athletic exercise are primarily principles for triggering and maintaining adaptation. While the “overload principle” and the principle of “progressive overload” i. e. systematically triggering and maintaining training demands over the system-specific threshold are predominately considered in exercise protocols in the field of exercise and fracture prevention, training principles related to specificity, individualization and variation are frequently not addressed with the necessary emphasis. In particular, the principle of specificity, i. e. the aspect that adaptation is specific to the applied stimulus und hence transfer effects between even closely related systems cannot necessarily be expected is a critical issue particularly in the area of balance exercise. In parallel, the individualization of the training protocol has to consider not only exercise specific issues, but also time and transfer aspects, functional limitations, pain, as well as individual predispositions. Another critical aspect of many training programs is exercise continuity. There is considerable evidence that even detraining periods as short as 4–6 weeks trigger significant and clinically relevant reductions in parameters related to fracture reduction. Finally, we advocate the introduction of recognized athletic training principles associated to periodization in order to structure the trainings process more clearly and to allow greater focus on dedicated training aims. In summary, the proper consideration and careful transfer of training principles is an essential component of successful training protocols in the area of fracture prevention. Unfortunately, many exercise training protocols demonstrate considerable deficits in this area.



Publication History

Received: 07 March 2023

Accepted: 06 April 2023

Article published online:
24 May 2023

© 2023. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • Literatur

  • 1 Weineck J. Optimales Training. Erlangen: Spitta-Verlag; 2019
  • 2 Donath L, Faude O. Trainingsprinzipien. MSK-Muskuloskelettale Physiotherapie 2022; 26: 81-85
  • 3 Hottenrott K, Neumann G. Trainingswissenschaft: Ein Lehrbuch in 14 Lektionen. Aachen: Meyer&Meyer Verlag; 2010
  • 4 Donath L, Faude O. (Evidenzbasierte) Trainingsprinzipien. In: Güllich A, Krüger M, Hrsg. Handbuch Sport und Sportwissenschaft. Heidelberg: Springer; 2020
  • 5 Martin D, Karl K, Lehnertz K. Handbuch Trainingslehre. Schorndorf: Hofmann Verlag; 1991
  • 6 Weineck J. Sportbiologie. Erlangen: Spitta Verlag; 2010
  • 7 Smith EL, Raab DM. Osteoporosis and physical activity. Acta Med Scand Suppl 1986; 711: 149-156 DOI: 10.1111/j.0954-6820.1986.tb08944.x.
  • 8 Turner CH. Homeostatic control of bone structure: an application of feedback theory. Bone 1991; 12: 203-217
  • 9 Bassey EJ, Rothwell MC, Littlewood JJ. et al. Pre- and postmenopausal women have different bone mineral density responses to the same high-impact exercise. J Bone Miner Res 1998; 13: 1805-1813
  • 10 Saarto T, Sievanen H, Kellokumpu-Lehtinen P. et al. Effect of supervised and home exercise training on bone mineral density among breast cancer patients. A 12-month randomised controlled trial. Osteoporos Int 2012; 23: 1601-1612 DOI: 10.1007/s00198-011-1761-4.
  • 11 Sugiyama T, Price JS, Lanyon LE. Functional adaptation to mechanical loading in both cortical and cancellous bone is controlled locally and is confined to the loaded bones. Bone 46: 314-321 DOI: 10.1016/j.bone.2009.08.054.
  • 12 Dalsky GP, Stocke KS, Ehsani AA. et al. Weight-bearing exercise training and lumbar bone mineral content in postmenopausal women. Ann Intern Med 1988; 108: 824-828
  • 13 Lohman T, Going S, Pamenter R. et al. Effects of resistance training on regional and total bone mineral density in premenopausal women: a randomized prospective study. J Bone Miner Res 1995; 10: 1015-1024
  • 14 Prince RL, Devine A, Dick I. et al. The effect of calcium supplementation (milk powder or tablets) and exercise on bone density in postmenopausal women. J Bone Miner Res 1995; 10: 1068-1075
  • 15 Raab-Cullen DM, Akhter MP, Kimmel DB. et al. Bone response to alternate-day mechanical loading of the rat tibia. J Bone Miner Res 1994; 9: 203-211
  • 16 Westerlind KC, Fluckey JD, Gordon SE. et al. Effect of resistance exercise training on cortical and cancellous bone in mature male rats. J Appl Physiol 1998; 84: 459-464
  • 17 Erben RG. Hypothesis: Coupling between Resorption and Formation in Cancellous bone Remodeling is a Mechanically Controlled Event. Front Endocrinol (Lausanne) 2015; 6: 82 DOI: 10.3389/fendo.2015.00082.
  • 18 Eriksen EF. Cellular mechanisms of bone remodeling. Rev Endocr Metab Disord 2010; 11: 219-227 DOI: 10.1007/s11154-010-9153-1.
  • 19 Devries MC, Giangregorio L. Using the specificity and overload principles to prevent sarcopenia, falls and fractures with exercise. Bone 2023; 166: 116573 DOI: 10.1016/j.bone.2022.116573.
  • 20 Hoffmann I, Kohl M, von Stengel S. et al. Exercise and the prevention of major osteoporotic fractures in adults: a systematic review and meta-analysis with special emphasis on intensity progression and study duration. Osteoporos Int 2022; 4: 15-28 DOI: 10.1007/s00198-022-06592-8.
  • 21 Sherrington C, Fairhall N, Kwok W. et al. Evidence on physical activity and falls prevention for people aged 65+years: systematic review to inform the WHO guidelines on physical activity and sedentary behaviour. Int J Behav Nutr Phys Act 2020; 17: 144 DOI: 10.1186/s12966-020-01041-3.
  • 22 Sun M, Min L, Xu N. et al. The Effect of Exercise Intervention on Reducing the Fall Risk in Older Adults: A Meta-Analysis of Randomized Controlled Trials. Int J Environ Res Public Health 2021; 18 DOI: 10.3390/ijerph182312562.
  • 23 Zitzmann AL, Shojaa M, Kast S. et al. The effect of different training frequency on bone mineral density in older adults. A comparative systematic review and meta-analysis. Bone 2021; 154: 116230 DOI: 10.1016/j.bone.2021.116230.
  • 24 Frost HM. Bone’s mechanostat: a 2003 update. Anat Rec A Discov Mol Cell Evol Biol 2003; 275: 1081-1101 DOI: 10.1002/ar.a.10119.
  • 25 Roux L. Gesammelte Abhandlungen über Entwicklungsmechanik der Organismen. Leipzig: Engelmann; 1895
  • 26 Olmedillas H, Gonzalez-Aguero A, Moreno LA. et al. Cycling and bone health: a systematic review. BMC Med 2012; 10: 168 DOI: 10.1186/1741-7015-10-168.
  • 27 Kemmler W, Stengel V. The Role of Exercise on Fracture Reduction and Bone Strengthening. In: Zoladz J, Hrsg. Muscle and Exercise Physiology. London: Academic Press; 2019: 433-448
  • 28 Muehlbauer T, Besemer C, Wehrle A. et al. Relationship between strength, power and balance performance in seniors. Gerontology 2012; 58: 504-512 DOI: 10.1159/000341614.
  • 29 Giboin LS, Gruber M, Kramer A. Task-specificity of balance training. Hum Mov Sci 2015; 44: 22-31 DOI: 10.1016/j.humov.2015.08.012.
  • 30 Donath L, Roth R, Zahner L. et al. Slackline training (balancing over narrow nylon ribbons) and balance performance: a meta-analytical review. Sports Medicine 2017; 47: 1075-1086
  • 31 Bouchard C, Rankinen T. Individual differences in response to regular physical activity. Med Sci Sports Exerc 2001; 33: S446-S451 discussion S452-443 DOI: 10.1097/00005768-200106001-00013.
  • 32 Scharhag-Rosenberger F, Walitzek S, Kindermann W. et al. Differences in adaptations to 1 year of aerobic endurance training: individual patterns of nonresponse. Scand J Med Sci Sports 2012; 22: 113-118 DOI: 10.1111/j.1600-0838.2010.01139.x.
  • 33 Pahmeier I. Bindung an Gesundheitssport [Habilitation]. Bayreuth: Universität Bayreuth; 1999
  • 34 Gross M, Jansen C-P, Blessing U. et al. Empfehlungspapier für das körperliche Training zur Sturzprävention als Einzelangebot bei älteren, zu Hause lebenden Menschen. physioscience 2020; 16: 176-183
  • 35 Jansen CP, Gross M, Kramer-Gmeiner F. et al. Empfehlungspapier für das körperliche Gruppentraining zur Sturzprävention bei älteren, zu Hause lebenden Menschen. Aktualisierung des Empfehlungspapiers der Bundesinitiative Sturzprävention von 2009. Z Gerontol Geriat 2021; 54: 229-239
  • 36 SGB_IX. Sozialgesetzbuch Neuntes Buch – Rehabilitation und Teilhabe behinderter Menschen: § 64 Ergänzende Leistungen. In: Bundesministerium der Justiz und für Verbraucherschutz. Ed Bundesrepublik-Deutschland; 2019
  • 37 Werle J, Klein I. Zur Analyse ambulanter Bewegungsangebote für Osteoporose-Patienten. Mobiles Leben 1994; 6: 23-29
  • 38 Seidel EJ, Wick C, Scheibe J. Besonderheiten des sportlichen Trainings beim älteren Menschen. Phys Med 1994; 4: 158-159
  • 39 Kemmler W, Von Stengel S, Lauber D. et al. Umsetzung leistungssportlicher Prinzipien in der Osteoporose-Prophylaxe – Zusammenfassende Ergebnisse der Erlangen Fitness und Osteoporose Präventions-Studie (EFOPS). Dtsch Z Sportmed 2007; 58: 427-432
  • 40 Kemmler W, Kohl M, Jakob F. et al. Effects of High Intensity Dynamic Resistance Exercise and Whey Protein Supplements on Osteosarcopenia in Older Men with Low Bone and Muscle Mass. Final Results of the Randomized Controlled FrOST Study. Nutrients 2020; 12: 2341 DOI: 10.3390/nu12082341.
  • 41 Hettchen M, von Stengel S, Kohl M. et al. Changes in Menopausal Risk Factors in Early Postmenopausal Osteopenic Women After 13 Months of High-Intensity Exercise: The Randomized Controlled ACTLIFE-RCT. Clin Interv Aging 2021; 16: 83-96 DOI: 10.2147/CIA.S283177.
  • 42 Schnabel G, Harre H-D, Krug J. et al. Trainingslehre, Trainingswissenschaft: Leistung – Training – Wettkampf. Aachen: Meyer & Meyer; 2008
  • 43 Kempf HD, Streicher H, Wagner P. et al. Methodisch-didaktische Überlegungen beim Einsatz von Trainingsgeräten. In: Kempf HD, Hrsg. Funktionelles Training mit Hand- und Kleingeräten. Berlin Heidelberg: Springer-Verlag; 2014
  • 44 Matwejew LP. Periodisierung des sportlichen Trainings. Berlin: Barthels & Wernitz; 1978
  • 45 Kemmler W, von Stengel S. Dose-response effect of exercise frequency on bone mineral density in post-menopausal, osteopenic women. Scand J Med Sci Sports 2014; 24: 526-534 DOI: 10.1111/sms.12024.
  • 46 Sherrington C, Fairhall NJ, Wallbank GK. et al. Exercise for preventing falls in older people living in the community. Cochrane Database Syst Rev 2019; 1: CD012424 DOI: 10.1002/14651858.CD012424.pub2.
  • 47 Beller G, Belavy DL, Sun L. et al. WISE-2005: bed-rest induced changes in bone mineral density in women during 60 days simulated microgravity. Bone 2011; 49: 858-866 DOI: 10.1016/j.bone.2011.06.021.
  • 48 Rittweger J, Frost HM, Schiessl H. et al. Muscle atrophy and bone loss after 90 days’ bed rest and the effects of flywheel resistive exercise and pamidronate: results from the LTBR study. Bone 2005; 36: 1019-1029 DOI: 10.1016/j.bone.2004.11.014.
  • 49 Sherk KA, Bemben DA, Brickman SE. et al. Effects of resistance training duration on muscular strength retention 6-month posttraining in older men and women. J Geriatr Phys Ther 2012; 35: 20-27 DOI: 10.1519/JPT.0b013e3182203c90.
  • 50 Modaberi S, Saemi E, Federolf PA. et al. A Systematic Review on Detraining Effects after Balance and Fall Prevention Interventions. J Clin Med 2021; 10 DOI: 10.3390/jcm10204656.
  • 51 Hettchen M, von Stengel S, Kohl M. et al Effects of high-intensity aerobic exercise and resistance training on cardiometabolic risk in early-postmenopausal women. 16-week results of the randomized controlled ACTLIFE-ER study. DZSM. 2021 accepted for publication.
  • 52 Kemmler W, Hettchen M, Kohl M. et al. Detraining Effects on Musculoskeletal Parameters in Early Postmenopausal Osteopenic Women: 3-Month Follow-Up of the Randomized Controlled ACTLIFE Study. Calcif Tissue Int 2021; 109: 1-11 DOI: 10.1007/s00223-021-00829-0.
  • 53 Kemmler W, Kohl M, Froehlich M. et al. Effects of High Intensity Resistance Training on Fitness and Fatness in Older Men with Osteosarcopenia. Front Physiol 2020; 11: 1014 DOI: 10.3389/fphys.2020.01014.
  • 54 Kemmler W, Kohl M, Frohlich M. et al. Detraining effects after 18 months of high intensity resistance training on osteosarcopenia in older men-Six-month follow-up of the randomized controlled Franconian Osteopenia and Sarcopenia Trial (FrOST). Bone 2021; 142: 115772 DOI: 10.1016/j.bone.2020.115772.
  • 55 Martinez-Aldao D, Diz JC, Varela S. et al. Impact of a five-month detraining period on the functional fitness and physical activity levels on active older people. Arch Gerontol Geriatr 2020; 91: 104191 DOI: 10.1016/j.archger.2020.104191.
  • 56 Harris C, DeBeliso M, Adams KJ. et al. Detraining in the older adult: effects of prior training intensity on strength retention. J Strength Cond Res 2007; 21: 813-818 DOI: 10.1519/R-15654.1.
  • 57 Toraman NF. Short term and long term detraining: is there any difference between young-old and old people?. Br J Sports Med 2005; 39: 561-564 DOI: 10.1136/bjsm.2004.015420.
  • 58 Bompa TO, Haff GG. Periodization. Theorie and methodology of training. Champaign: Human Kinetics; 2009
  • 59 Saxon LK, Robling AG, Alam IM. et al. Mechanosensitivity of the rat skeleton decreases after a long period of loading, but is improved with time off. Bone 2005; 36: 454-464
  • 60 Turner CH, Robling AG. Exercise as an anabolic stimulus for bone. Curr Pharm Des 2004; 10: 2629-2641
  • 61 Weerdesteyn V, Groen BE, van Swigchem R. et al. Martial arts fall techniques reduce hip impact forces in naive subjects after a brief period of training. J Electromyogr Kinesiol 2008; 18: 235-242 S1050-6411(07)00104-6 [pii] DOI: 10.1016/j.jelekin.2007.06.010.
  • 62 Issurin V. Block periodization versus traditional training theory: a review. J Sports Med Phys Fitness 2008; 48: 65-75
  • 63 Kemmler W, von Stengel S, Engelke K. et al. Exercise effects on bone mineral density, falls, coronary risk factors, and health care costs in older women: the randomized controlled senior fitness and prevention (SEFIP) study. Arch Intern Med 2010; 170: 179-185 170/2/179 [pii] DOI: 10.1001/archinternmed.2009.499.
  • 64 Kemmler W, Bebenek M, von Stengel S. et al. Effect of block-periodized exercise training on bone and coronary heart disease risk factors in early post-menopausal women: a randomized controlled study. Scand J Med Sci Sports 2013; 23: 121-129 DOI: 10.1111/j.1600-0838.2011.01335.x.
  • 65 Kemmler W, Bebenek M, Kohl M. et al. Exercise and fractures in postmenopausal women. Final results of the controlled Erlangen Fitness and Osteoporosis Prevention Study (EFOPS). Osteoporos Int 2015; 26: 2491-2499 DOI: 10.1007/s00198-015-3165-3.
  • 66 Kemmler W, Lauber D, Weineck J. et al. Benefits of 2 years of intense exercise on bone density, physical fitness, and blood lipids in early postmenopausal osteopenic women: results of the Erlangen Fitness Osteoporosis Prevention Study (EFOPS). Arch Intern Med 2004; 164: 1084-1091 DOI: 10.1001/archinte.164.10.1084/164/10/1084.
  • 67 Kemmler W, Lauber D, Von Stengel S. et al. Developing maximum strength in older adults – a series of studies. In: Gießing J, Fröhlich M, Preuss P, Hrsg. Current results of strength training research. Göttingen: Cuvillier Verlag; 2005: 114-133
  • 68 Strohacker K, Fazzino D, Breslin WL. et al. The use of periodization in exercise prescriptions for inactive adults: A systematic review. Prev Med Rep 2015; 2: 385-396 DOI: 10.1016/j.pmedr.2015.04.023.
  • 69 Conlon JA, Newton RU, Tufano JJ. et al. Periodization Strategies in Older Adults: Impact on Physical Function and Health. Med Sci Sports Exerc 2016; 48: 2426-2436 DOI: 10.1249/MSS.0000000000001053.