Planta Med 2010; 76(3): 251-257
DOI: 10.1055/s-0029-1186142
Pharmacology
Original Papers
© Georg Thieme Verlag KG Stuttgart · New York

Anti-inflammatory Effects of Madecassic Acid via the Suppression of NF-κB Pathway in LPS-Induced RAW 264.7 Macrophage Cells

Jong-Heon Won1 , Ji-Sun Shin1 , Hee-Juhn Park2 , Hyun-Ju Jung3 , Duck-Jae Koh4 , Baek-Geon Jo4 , Jin-Yong Lee4 , Kijoo Yun5 , Kyung-Tae Lee1
  • 1College of Pharmacy, Kyung-Hee University, Hoegi-Dong, Seoul, Republic of Korea
  • 2Department of Botanical Resources, Sangji University, Wonju, Republic of Korea
  • 3Department of Oriental Pharmacy, Wonkwang University, Sinyong-Dong, Iksan, Republic of Korea
  • 4College of Oriental Medicine, Kyung Hee University, Hoegi-Dong, Seoul, Republic of Korea
  • 5College of Culture and Industry, Gangneung-Wonju National University, Namwon-ro, Wonju, Gangwon, 220-711, Republic of Korea
Further Information

Publication History

received April 23, 2009 revised July 17, 2009

accepted August 15, 2009

Publication Date:
11 September 2009 (online)

Abstract

We have investigated the anti-inflammatory effects of madecassic acid and madecassoside isolated from Centella asiatica (Umbelliferae) on lipopolysaccharide (LPS)-stimulated RAW 264.7 murine macrophage cells. Both madecassic acid and madecassoside inhibited the production of nitric oxide (NO), prostaglandin E2 (PGE2), tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and IL-6. However, madecassic acid more potently suppressed these inflammatory mediators than did madecassoside. Consistent with these observations, madecassic acid inhibited the LPS-induced expression of iNOS and COX-2 at the protein level and of iNOS, COX-2, TNF-α, IL-1β, and IL-6 at the mRNA level in RAW 264.7 macrophage cells, as determined by Western blotting and RT‐PCR, respectively. Furthermore, madecassic acid suppressed the LPS-induced activation of nuclear factor-κB (NF-κB), and this was associated with the abrogation of inhibitory kappa B-α (IκB-α) degradation and with the subsequent blocking of p65 protein translocation to the nucleus. These results suggest that the anti-inflammatory properties of madecassic acid are caused by iNOS, COX-2, TNF-α, IL-1β, and IL-6 inhibition via the downregulation of NF-κB activation in RAW 264.7 macrophage cells.

References

  • 1 Lawrence T, Willoughby D A, Gilroy D W. Anti-inflammatory lipid mediators and insights into the resolution of inflammation.  Nat Rev Immunol. 2002;  2 787-795
  • 2 Oberyszyn T M. Inflammation and wound healing.  Front Biosci. 2007;  12 2993-2999
  • 3 Lau K S, Grange R W, Isotani E, Sarelius I H, Kamm K E, Huang P L. nNOS and eNOS modulate cGMP formation and vascular response in contracting fast-twitch skeletal muscle.  Physiol Genomics. 2000;  2 21-27
  • 4 O'Neill G P, Ford-Hutchinson A W. Expression of mRNA for cyclooxygenase-1 and cyclooxygenase-2 in human tissues.  FEBS Lett. 1993;  330 156-160
  • 5 Mumm J B, Oft M. Cytokine-based transformation of immune surveillance into tumor-promoting inflammation.  Oncogene. 2008;  27 5913-5919
  • 6 Nambu A, Nakae S, Iwakura Y. IL-1beta, but not IL-1alpha, is required for antigen-specific T cell activation and the induction of local inflammation in the delayed-type hypersensitivity responses.  Int Immunol. 2006;  18 701-712
  • 7 Hodge D R, Hurt E M, Farrar W L. The role of IL-6 and STAT3 in inflammation and cancer.  Eur J Cancer. 2005;  41 2502-2512
  • 8 Marnett L J, Rowlinson S W, Goodwin D C, Kalgutkar A S, Lanzo C A. Arachidonic acid oxygenation by COX-1 and COX-2. Mechanisms of catalysis and inhibition.  J Biol Chem. 1999;  274 22903-22906
  • 9 Dendorfer U. Molecular biology of cytokines.  Artif Organs. 1996;  20 437-444
  • 10 Baldwin Jr A S. The NF-kappa B and I kappa B proteins: new discoveries and insights.  Annu Rev Immunol. 1996;  14 649-683
  • 11 Baeuerle P A. IkappaB-NF-kappaB structures: at the interface of inflammation control.  Cell. 1998;  95 729-731
  • 12 Gadahad M R, Rao M, Rao G. Enhancement of hippocampal CA3 neuronal dendritic arborization by Centella asiatica (Linn) fresh leaf extract treatment in adult rats.  J Chin Med Assoc. 2008;  71 6-13
  • 13 Matsuda H, Morikawa T, Ueda H, Yoshikawa M. Medicinal foodstuffs. XXVII. Saponin constituents of gotu kola (2): structures of new ursane- and oleanane-type triterpene oligoglycosides, centellasaponins B, C, and D, from Centella asiatica cultivated in Sri Lanka.  Chem Pharm Bull (Tokyo). 2001;  49 1368-1371
  • 14 Alan D W, Laurence A C, Rene S, Pieter J S. New Innovations in scar management.  Aesthetic Plast Surg. 2000;  24 227-234
  • 15 Suguna L, Sivakumar P, Chandrakasan G. Effect of Centella asiatica extract on dermal wound healing in rats.  Ind J Exp Biol. 1996;  34 1208-1211
  • 16 Babu T D, Kuttan G, Padikkala J. Cytotoxic and antitumour properties of certain taxa of Umbelliferae with special reference to Centella asiatica (L.) Urban.  J Ethnopharmacol. 1995;  48 53-57
  • 17 Zainol M K, Abd-Hamid A, Yusof S, Muse R. Antioxidant activity and total phenolic compounds of leaf, root and petiole of four accessions of Centella asiatica (L) Urban.  Food Chem. 2003;  81 575-581
  • 18 Sahu N P, Roy S K, Mahato S B. Spectroscopic determination of structures of triterpenoid trisaccharides from Centella asiatica.  Phytochemistry. 1989;  28 2852-2854
  • 19 Lin Y G. The clinical research of Centella asiatica on rheumatoid arthritis.  J Pragmat Chinese Integr Med. 1996;  9 1440-1443
  • 20 Jung H J, Nam J H, Lee K T, Lee Y S, Choi J W, Kim W B, Chung W Y, Park K K, Park H J. Structure-activity relationships of polyhydroxyursane-type triterpenoids on the cytoprotective and anti-inflammatory effects.  Nat Prod Sci. 2007;  13 152-159
  • 21 Kim J Y, Park S J, Yun K J, Cho Y W, Park H J, Lee K T. Isoliquiritigenin isolated from the roots of Glycyrrhiza uralensis inhibits LPS-induced iNOS and COX-2 expression via the attenuation of NF-kappaB in RAW 264.7 macrophages.  Eur J Pharmacol. 2008;  584 175-184
  • 22 Dzubak P, Hajduch M, Vydra D, Hustova A, Kvasnica M, Biedermann D, Markova L, Urban M, Sarek J. Pharmacological activities of natural triterpenoids and their therapeutic implications.  Nat Prod Rep. 2006;  23 394-411
  • 23 Li G G, Bian G X, Ren J P, Wen L Q, Zhang M, Lü Q J. Protective effect of madecassoside against reperfusion injury after regional ischemia in rabbit heart in vivo.  Yao Xue Xue Bao. 2007;  42 475-480
  • 24 Liu M R, Han T, Chen Y, Qin L P, Zheng H C, Rui Y C. Effect of madecassoside on depression behavior of mice and activities of MAO in different brain regions of rats.  Zhong Xi Yi Jie He Xue Bao. 2004;  2 440-444
  • 25 Liu M, Dai Y, Yao X, Li Y, Luo Y, Xia Y, Gong Z. Anti-rheumatoid arthritic effect of madecassoside on type II collagen-induced arthritis in mice.  Int Immunopharmacol. 2008;  8 1561-1566
  • 26 Jung H J, Park H J, Kim R G, Shin K M, Ha J, Choi J W. In vivo anti-inflammatory and antinociceptive effects of liriodendrin isolated from the stem bark of Acanthopanax senticosus.  Planta Med. 2003;  69 610-616
  • 27 Yun K J, Kim J Y, Kim J B, Lee K W, Jeong S Y, Park H J, Jung H J, Cho Y W, Yun K, Lee K T. Inhibition of LPS-induced NO and PGE2 production by asiatic acid via NF-kappa B inactivation in RAW 264.7 macrophages: possible involvement of the IKK and MAPK pathways.  Int Immunopharmacol. 2008;  8 431-441
  • 28 Caballero-George C, Vanderheyden P M, Okamoto Y, Masaki T, Mbwambo Z, Apers S. Evaluation of bioactive saponins and triterpenoidal aglycons for their binding properties on human endothelin ETA and angiotensin AT1 receptors.  Phytother Res. 2004;  18 729-736
  • 29 Zandi E, Rothwarf D M, Delhase M, Hayakawa M, Karin M. The IkappaB kinase complex (IKK) contains two kinase subunits, IKKalpha and IKKbeta, necessary for IkappaB phosphorylation and NF-kappaB activation.  Cell. 1997;  91 243-252

Ph.D. Kyung-Tae Lee

Department of Pharmaceutical Biochemistry
College of Pharmacy
Kyung-Hee University

Dongdaemun-Ku, Hoegi-Dong #1

130-701 Seoul

Republic of Korea

Phone: + 82 (0) 29 61 08 60

Fax: + 82 (0) 29 62 08 60

Email: ktlee@khu.ac.kr

    >