Semin Respir Crit Care Med 2015; 36(01): 085-098
DOI: 10.1055/s-0034-1398388
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Acinetobacter baumannii: Evolution of Antimicrobial Resistance—Treatment Options

Yohei Doi
1   Division of Infectious Diseases, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
,
Gerald L. Murray
2   Department of Microbiology, Monash University, Melbourne, Australia
,
Anton Y. Peleg
2   Department of Microbiology, Monash University, Melbourne, Australia
3   Department of Infectious Diseases, Alfred Hospital, Melbourne, Australia
› Author Affiliations
Further Information

Publication History

Publication Date:
02 February 2015 (online)

Abstract

The first decade of the 20th century witnessed a surge in the incidence of infections due to several highly antimicrobial-resistant bacteria in hospitals worldwide. Acinetobacter baumannii is one such organism that turned from an occasional respiratory pathogen into a major nosocomial pathogen. An increasing number of A. baumannii genome sequences have broadened our understanding of the genetic makeup of these bacteria and highlighted the extent of horizontal transfer of DNA. Animal models of disease combined with bacterial mutagenesis have provided some valuable insights into mechanisms of A. baumannii pathogenesis. Bacterial factors known to be important for disease include outer membrane porins, surface structures including capsule and lipopolysaccharide, enzymes such as phospholipase D, iron acquisition systems, and regulatory proteins. A. baumannii has a propensity to accumulate resistance to various groups of antimicrobial agents. In particular, carbapenem resistance has become commonplace, accounting for the majority of A. baumannii strains in many hospitals today. Carbapenem-resistant strains are often resistant to all other routinely tested agents. Treatment of carbapenem-resistant A. baumannii infection therefore involves the use of combinations of last resort agents such as colistin and tigecycline, but the efficacy and safety of these approaches are yet to be defined. Antimicrobial-resistant A. baumannii has high potential to spread among ill patients in intensive care units. Early recognition and timely implementation of appropriate infection control measures is crucial in preventing outbreaks.

 
  • References

  • 1 Neidell MJ, Cohen B, Furuya Y , et al. Costs of healthcare- and community-associated infections with antimicrobial-resistant versus antimicrobial-susceptible organisms. Clin Infect Dis 2012; 55 (6) 807-815
  • 2 Lautenbach E, Synnestvedt M, Weiner MG , et al. Epidemiology and impact of imipenem resistance in Acinetobacter baumannii . Infect Control Hosp Epidemiol 2009; 30 (12) 1186-1192
  • 3 Peleg AY, Seifert H, Paterson DL. Acinetobacter baumannii: emergence of a successful pathogen. Clin Microbiol Rev 2008; 21 (3) 538-582
  • 4 Abbott I, Cerqueira GM, Bhuiyan S, Peleg AY. Carbapenem resistance in Acinetobacter baumannii: laboratory challenges, mechanistic insights and therapeutic strategies. Expert Rev Anti Infect Ther 2013; 11 (4) 395-409
  • 5 Chuang YC, Sheng WH, Li SY , et al. Influence of genospecies of Acinetobacter baumannii complex on clinical outcomes of patients with Acinetobacter bacteremia. Clin Infect Dis 2011; 52 (3) 352-360
  • 6 Queenan AM, Pillar CM, Deane J , et al. Multidrug resistance among Acinetobacter spp. in the USA and activity profile of key agents: results from CAPITAL Surveillance 2010. Diagn Microbiol Infect Dis 2012; 73 (3) 267-270
  • 7 Sievert DM, Ricks P, Edwards JR , et al; National Healthcare Safety Network (NHSN) Team and Participating NHSN Facilities. Antimicrobial-resistant pathogens associated with healthcare-associated infections: summary of data reported to the National Healthcare Safety Network at the Centers for Disease Control and Prevention, 2009-2010. Infect Control Hosp Epidemiol 2013; 34 (1) 1-14
  • 8 Bergogne-Bérézin E, Towner KJ. Acinetobacter spp. as nosocomial pathogens: microbiological, clinical, and epidemiological features. Clin Microbiol Rev 1996; 9 (2) 148-165
  • 9 Cai Y, Chai D, Wang R, Liang B, Bai N. Colistin resistance of Acinetobacter baumannii: clinical reports, mechanisms and antimicrobial strategies. J Antimicrob Chemother 2012; 67 (7) 1607-1615
  • 10 Zarrilli R, Pournaras S, Giannouli M, Tsakris A. Global evolution of multidrug-resistant Acinetobacter baumannii clonal lineages. Int J Antimicrob Agents 2013; 41 (1) 11-19
  • 11 Higgins PG, Dammhayn C, Hackel M, Seifert H. Global spread of carbapenem-resistant Acinetobacter baumannii . J Antimicrob Chemother 2010; 65 (2) 233-238
  • 12 Ng TM, Teng CB, Lye DC, Apisarnthanarak A. A multicenter case-case control study for risk factors and outcomes of extensively drug-resistant Acinetobacter baumannii bacteremia. Infect Control Hosp Epidemiol 2014; 35 (1) 49-55
  • 13 Sheng WH, Liao CH, Lauderdale TL , et al. A multicenter study of risk factors and outcome of hospitalized patients with infections due to carbapenem-resistant Acinetobacter baumannii . Int J Infect Dis 2010; 14 (9) e764-e769
  • 14 Cisneros JM, Rodríguez-Baño J, Fernández-Cuenca F , et al; Spanish Group for Nosocomial Infection (GEIH) for the Spanish Society of Infectious Diseases and Clinical Microbiology (SEIMC). Risk-factors for the acquisition of imipenem-resistant Acinetobacter baumannii in Spain: a nationwide study. Clin Microbiol Infect 2005; 11 (11) 874-879
  • 15 Lee SO, Kim NJ, Choi SH , et al. Risk factors for acquisition of imipenem-resistant Acinetobacter baumannii: a case-control study. Antimicrob Agents Chemother 2004; 48 (1) 224-228
  • 16 Lemos EV, de la Hoz FP, Einarson TR , et al. Carbapenem resistance and mortality in patients with Acinetobacter baumannii infection: systematic review and meta-analysis. Clin Microbiol Infect 2014; 20 (5) 416-423
  • 17 Kim YJ, Kim SI, Hong KW, Kim YR, Park YJ, Kang MW. Risk factors for mortality in patients with carbapenem-resistant Acinetobacter baumannii bacteremia: impact of appropriate antimicrobial therapy. J Korean Med Sci 2012; 27 (5) 471-475
  • 18 Batirel A, Balkan II, Karabay O , et al. Comparison of colistin-carbapenem, colistin-sulbactam, and colistin plus other antibacterial agents for the treatment of extremely drug-resistant Acinetobacter baumannii bloodstream infections. Eur J Clin Microbiol Infect Dis 2014; 33 (8) 1311-1322
  • 19 Lee HY, Chen CL, Wu SR, Huang CW, Chiu CH. Risk factors and outcome analysis of Acinetobacter baumannii complex bacteremia in critical patients. Crit Care Med 2014; 42 (5) 1081-1088
  • 20 Kim SY, Jung JY, Kang YA , et al. Risk factors for occurrence and 30-day mortality for carbapenem-resistant Acinetobacter baumannii bacteremia in an intensive care unit. J Korean Med Sci 2012; 27 (8) 939-947
  • 21 Esterly JS, Griffith M, Qi C, Malczynski M, Postelnick MJ, Scheetz MH. Impact of carbapenem resistance and receipt of active antimicrobial therapy on clinical outcomes of Acinetobacter baumannii bloodstream infections. Antimicrob Agents Chemother 2011; 55 (10) 4844-4849
  • 22 Munoz-Price LS, Zembower T, Penugonda S , et al. Clinical outcomes of carbapenem-resistant Acinetobacter baumannii bloodstream infections: study of a 2-state monoclonal outbreak. Infect Control Hosp Epidemiol 2010; 31 (10) 1057-1062
  • 23 Smith MG, Gianoulis TA, Pukatzki S , et al. New insights into Acinetobacter baumannii pathogenesis revealed by high-density pyrosequencing and transposon mutagenesis. Genes Dev 2007; 21 (5) 601-614
  • 24 Choi CH, Lee JS, Lee YC, Park TI, Lee JC. Acinetobacter baumannii invades epithelial cells and outer membrane protein A mediates interactions with epithelial cells. BMC Microbiol 2008; 8: 216
  • 25 Rumbo C, Tomás M, Fernández Moreira E , et al. The Acinetobacter baumannii Omp33-36 porin is a virulence factor that induces apoptosis and modulates autophagy in human cells. Infect Immun 2014; 82 (11) 4666-4680
  • 26 Smani Y, Dominguez-Herrera J, Pachón J. Association of the outer membrane protein Omp33 with fitness and virulence of Acinetobacter baumannii . J Infect Dis 2013; 208 (10) 1561-1570
  • 27 Russo TA, Luke NR, Beanan JM , et al. The K1 capsular polysaccharide of Acinetobacter baumannii strain 307-0294 is a major virulence factor. Infect Immun 2010; 78 (9) 3993-4000
  • 28 Luke NR, Sauberan SL, Russo TA , et al. Identification and characterization of a glycosyltransferase involved in Acinetobacter baumannii lipopolysaccharide core biosynthesis. Infect Immun 2010; 78 (5) 2017-2023
  • 29 Jacobs AC, Hood I, Boyd KL , et al. Inactivation of phospholipase D diminishes Acinetobacter baumannii pathogenesis. Infect Immun 2010; 78 (5) 1952-1962
  • 30 Gaddy JA, Arivett BA, McConnell MJ, López-Rojas R, Pachón J, Actis LA. Role of acinetobactin-mediated iron acquisition functions in the interaction of Acinetobacter baumannii strain ATCC 19606T with human lung epithelial cells, Galleria mellonella caterpillars, and mice. Infect Immun 2012; 80 (3) 1015-1024
  • 31 Cerqueira GM, Kostoulias X, Khoo C , et al. A global virulence regulator in Acinetobacter baumannii and its control of the phenylacetic acid catabolic pathway. J Infect Dis 2014; 210 (1) 46-55
  • 32 de Breij A, Dijkshoorn L, Lagendijk E , et al. Do biofilm formation and interactions with human cells explain the clinical success of Acinetobacter baumannii?. PLoS ONE 2010; 5 (5) e10732
  • 33 Longo F, Vuotto C, Donelli G. Biofilm formation in Acinetobacter baumannii . New Microbiol 2014; 37 (2) 119-127
  • 34 Høiby N, Ciofu O, Johansen HK , et al. The clinical impact of bacterial biofilms. Int J Oral Sci 2011; 3 (2) 55-65
  • 35 Davenport EK, Call DR, Beyenal H. Differential protection from tobramycin by extracellular polymeric substances from Acinetobacter baumannii and Staphylococcus aureus biofilms. Antimicrob Agents Chemother 2014; 58 (8) 4755-4761
  • 36 Lee JC, Koerten H, van den Broek P , et al. Adherence of Acinetobacter baumannii strains to human bronchial epithelial cells. Res Microbiol 2006; 157 (4) 360-366
  • 37 Gaddy JA, Tomaras AP, Actis LA. The Acinetobacter baumannii 19606 OmpA protein plays a role in biofilm formation on abiotic surfaces and in the interaction of this pathogen with eukaryotic cells. Infect Immun 2009; 77 (8) 3150-3160
  • 38 Smani Y, McConnell MJ, Pachón J. Role of fibronectin in the adhesion of Acinetobacter baumannii to host cells. PLoS ONE 2012; 7 (4) e33073
  • 39 Bentancor LV, Camacho-Peiro A, Bozkurt-Guzel C, Pier GB, Maira-Litrán T. Identification of Ata, a multifunctional trimeric autotransporter of Acinetobacter baumannii . J Bacteriol 2012; 194 (15) 3950-3960
  • 40 Lee JS, Choi CH, Kim JW, Lee JC. Acinetobacter baumannii outer membrane protein A induces dendritic cell death through mitochondrial targeting. J Microbiol 2010; 48 (3) 387-392
  • 41 Choi CH, Lee EY, Lee YC , et al. Outer membrane protein 38 of Acinetobacter baumannii localizes to the mitochondria and induces apoptosis of epithelial cells. Cell Microbiol 2005; 7 (8) 1127-1138
  • 42 García A, Solar H, González C, Zemelman R. Effect of EDTA on the resistance of clinical isolates of Acinetobacter baumannii to the bactericidal activity of normal human serum. J Med Microbiol 2000; 49 (11) 1047-1050
  • 43 Moffatt JH, Harper M, Mansell A , et al. Lipopolysaccharide-deficient Acinetobacter baumannii shows altered signaling through host Toll-like receptors and increased susceptibility to the host antimicrobial peptide LL-37. Infect Immun 2013; 81 (3) 684-689
  • 44 Kim SW, Choi CH, Moon DC , et al. Serum resistance of Acinetobacter baumannii through the binding of factor H to outer membrane proteins. FEMS Microbiol Lett 2009; 301 (2) 224-231
  • 45 King LB, Swiatlo E, Swiatlo A, McDaniel LS. Serum resistance and biofilm formation in clinical isolates of Acinetobacter baumannii . FEMS Immunol Med Microbiol 2009; 55 (3) 414-421
  • 46 King LB, Pangburn MK, McDaniel LS. Serine protease PKF of Acinetobacter baumannii results in serum resistance and suppression of biofilm formation. J Infect Dis 2013; 207 (7) 1128-1134
  • 47 Liou ML, Soo PC, Ling SR, Kuo HY, Tang CY, Chang KC. The sensor kinase BfmS mediates virulence in Acinetobacter baumannii . J Microbiol Immunol Infect 2014; 47 (4) 275-281
  • 48 Eijkelkamp BA, Stroeher UH, Hassan KA, Elbourne LD, Paulsen IT, Brown MH. H-NS plays a role in expression of Acinetobacter baumannii virulence features. Infect Immun 2013; 81 (7) 2574-2583
  • 49 Wang N, Ozer EA, Mandel MJ, Hauser AR. Genome-wide identification of Acinetobacter baumannii genes necessary for persistence in the lung. MBio 2014; 5 (3) e01163-e14
  • 50 van Faassen H, KuoLee R, Harris G, Zhao X, Conlan JW, Chen W. Neutrophils play an important role in host resistance to respiratory infection with Acinetobacter baumannii in mice. Infect Immun 2007; 75 (12) 5597-5608
  • 51 Breslow JM, Meissler Jr JJ, Hartzell RR , et al. Innate immune responses to systemic Acinetobacter baumannii infection in mice: neutrophils, but not interleukin-17, mediate host resistance. Infect Immun 2011; 79 (8) 3317-3327
  • 52 Qiu H, KuoLee R, Harris G, Van Rooijen N, Patel GB, Chen W. Role of macrophages in early host resistance to respiratory Acinetobacter baumannii infection. PLoS ONE 2012; 7 (6) e40019
  • 53 Knapp S, Wieland CW, Florquin S , et al. Differential roles of CD14 and toll-like receptors 4 and 2 in murine Acinetobacter pneumonia. Am J Respir Crit Care Med 2006; 173 (1) 122-129
  • 54 Kim CH, Jeong YJ, Lee J , et al. Essential role of toll-like receptor 4 in Acinetobacter baumannii-induced immune responses in immune cells. Microb Pathog 2013; 54: 20-25
  • 55 Erridge C, Moncayo-Nieto OL, Morgan R, Young M, Poxton IR. Acinetobacter baumannii lipopolysaccharides are potent stimulators of human monocyte activation via Toll-like receptor 4 signalling. J Med Microbiol 2007; 56 (Pt 2) 165-171
  • 56 Bist P, Dikshit N, Koh TH, Mortellaro A, Tan TT, Sukumaran B. The Nod1, Nod2, and Rip2 axis contributes to host immune defense against intracellular Acinetobacter baumannii infection. Infect Immun 2014; 82 (3) 1112-1122
  • 57 McConnell MJ, Domínguez-Herrera J, Smani Y, López-Rojas R, Docobo-Pérez F, Pachón J. Vaccination with outer membrane complexes elicits rapid protective immunity to multidrug-resistant Acinetobacter baumannii . Infect Immun 2011; 79 (1) 518-526
  • 58 Fajardo Bonin R, Chapeaurouge A, Perales J , et al. Identification of immunogenic proteins of the bacterium Acinetobacter baumannii using a proteomic approach. Proteomics Clin Appl 2014; 8 (11–12) 916-923
  • 59 Luo G, Lin L, Ibrahim AS , et al. Active and passive immunization protects against lethal, extreme drug resistant-Acinetobacter baumannii infection. PLoS ONE 2012; 7 (1) e29446
  • 60 Hujer KM, Hamza NS, Hujer AM , et al. Identification of a new allelic variant of the Acinetobacter baumannii cephalosporinase, ADC-7 β-lactamase: defining a unique family of class C enzymes. Antimicrob Agents Chemother 2005; 49 (7) 2941-2948
  • 61 Bou G, Martínez-Beltrán J. Cloning, nucleotide sequencing, and analysis of the gene encoding an AmpC β-lactamase in Acinetobacter baumannii . Antimicrob Agents Chemother 2000; 44 (2) 428-432
  • 62 Héritier C, Poirel L, Nordmann P. Cephalosporinase over-expression resulting from insertion of ISAba1 in Acinetobacter baumannii . Clin Microbiol Infect 2006; 12 (2) 123-130
  • 63 Lopes BS, Amyes SG. Role of ISAba1 and ISAba125 in governing the expression of bla ADC in clinically relevant Acinetobacter baumannii strains resistant to cephalosporins. J Med Microbiol 2012; 61 (Pt 8): 1103-1108
  • 64 Vahaboglu H, Oztürk R, Aygün G , et al. Widespread detection of PER-1-type extended-spectrum β-lactamases among nosocomial Acinetobacter and Pseudomonas aeruginosa isolates in Turkey: a nationwide multicenter study. Antimicrob Agents Chemother 1997; 41 (10) 2265-2269
  • 65 Lee Y, Bae IK, Kim J, Jeong SH, Lee K. Dissemination of ceftazidime-resistant Acinetobacter baumannii clonal complex 92 in Korea. J Appl Microbiol 2012; 112 (6) 1207-1211
  • 66 Naas T, Coignard B, Carbonne A , et al; French Nosocomial Infection Early Warning Investigation and Surveillance Network. VEB-1 Extended-spectrum β-lactamase-producing Acinetobacter baumannii, France. Emerg Infect Dis 2006; 12 (8) 1214-1222
  • 67 Adams-Haduch JM, Paterson DL, Sidjabat HE , et al. Genetic basis of multidrug resistance in Acinetobacter baumannii clinical isolates at a tertiary medical center in Pennsylvania. Antimicrob Agents Chemother 2008; 52 (11) 3837-3843
  • 68 Turton JF, Ward ME, Woodford N , et al. The role of ISAba1 in expression of OXA carbapenemase genes in Acinetobacter baumannii . FEMS Microbiol Lett 2006; 258 (1) 72-77
  • 69 Figueiredo S, Poirel L, Papa A, Koulourida V, Nordmann P. Overexpression of the naturally occurring bla OXA-51 gene in Acinetobacter baumannii mediated by novel insertion sequence ISAba9 . Antimicrob Agents Chemother 2009; 53 (9) 4045-4047
  • 70 Higgins PG, Pérez-Llarena FJ, Zander E, Fernández A, Bou G, Seifert H. OXA-235, a novel class D β-lactamase involved in resistance to carbapenems in Acinetobacter baumannii . Antimicrob Agents Chemother 2013; 57 (5) 2121-2126
  • 71 Mugnier PD, Poirel L, Naas T, Nordmann P. Worldwide dissemination of the bla OXA-23 carbapenemase gene of Acinetobacter baumannii . Emerg Infect Dis 2010; 16 (1) 35-40
  • 72 Chen Y, Zhou Z, Jiang Y, Yu Y. Emergence of NDM-1-producing Acinetobacter baumannii in China. J Antimicrob Chemother 2011; 66 (6) 1255-1259
  • 73 Decousser JW, Jansen C, Nordmann P , et al. Outbreak of NDM-1-producing Acinetobacter baumannii in France, January to May 2013. Euro Surveill 2013; 18 (31) 20547
  • 74 Tsakris A, Ikonomidis A, Pournaras S , et al. VIM-1 metallo-β-lactamase in Acinetobacter baumannii . Emerg Infect Dis 2006; 12 (6) 981-983
  • 75 Kouyama Y, Harada S, Ishii Y , et al. Molecular characterization of carbapenem-non-susceptible Acinetobacter spp. in Japan: predominance of multidrug-resistant Acinetobacter baumannii clonal complex 92 and IMP-type metallo-β-lactamase-producing non-baumannii Acinetobacter species. J Infect Chemother 2012; 18 (4) 522-528
  • 76 Lee K, Yum JH, Yong D , et al. Novel acquired metallo-β-lactamase gene, bla SIM-1, in a class 1 integron from Acinetobacter baumannii clinical isolates from Korea. Antimicrob Agents Chemother 2005; 49 (11) 4485-4491
  • 77 Robledo IE, Aquino EE, Santé MI , et al. Detection of KPC in Acinetobacter spp. in Puerto Rico. Antimicrob Agents Chemother 2010; 54 (3) 1354-1357
  • 78 Urban C, Go E, Mariano N, Rahal JJ. Interaction of sulbactam, clavulanic acid and tazobactam with penicillin-binding proteins of imipenem-resistant and -susceptible Acinetobacter baumannii . FEMS Microbiol Lett 1995; 125: 193-198
  • 79 Fernández-Cuenca F, Martínez-Martínez L, Conejo MC, Ayala JA, Perea EJ, Pascual A. Relationship between β-lactamase production, outer membrane protein and penicillin-binding protein profiles on the activity of carbapenems against clinical isolates of Acinetobacter baumannii . J Antimicrob Chemother 2003; 51 (3) 565-574
  • 80 Krizova L, Poirel L, Nordmann P, Nemec A. TEM-1 β-lactamase as a source of resistance to sulbactam in clinical strains of Acinetobacter baumannii . J Antimicrob Chemother 2013; 68 (12) 2786-2791
  • 81 Giannouli M, Di Popolo A, Durante-Mangoni E , et al. Molecular epidemiology and mechanisms of rifampicin resistance in Acinetobacter baumannii isolates from Italy. Int J Antimicrob Agents 2012; 39 (1) 58-63
  • 82 Houang ET, Chu YW, Lo WS, Chu KY, Cheng AF. Epidemiology of rifampin ADP-ribosyltransferase (arr-2) and metallo-β-lactamase (bla IMP-4) gene cassettes in class 1 integrons in Acinetobacter strains isolated from blood cultures in 1997 to 2000. Antimicrob Agents Chemother 2003; 47 (4) 1382-1390
  • 83 Shaw KJ, Rather PN, Hare RS, Miller GH. Molecular genetics of aminoglycoside resistance genes and familial relationships of the aminoglycoside-modifying enzymes. Microbiol Rev 1993; 57 (1) 138-163
  • 84 Landman D, Kelly P, Bäcker M , et al. Antimicrobial activity of a novel aminoglycoside, ACHN-490, against Acinetobacter baumannii and Pseudomonas aeruginosa from New York City. J Antimicrob Chemother 2011; 66 (2) 332-334
  • 85 Akers KS, Chaney C, Barsoumian A , et al. Aminoglycoside resistance and susceptibility testing errors in Acinetobacter baumannii-calcoaceticus complex. J Clin Microbiol 2010; 48 (4) 1132-1138
  • 86 Liou GF, Yoshizawa S, Courvalin P, Galimand M. Aminoglycoside resistance by ArmA-mediated ribosomal 16S methylation in human bacterial pathogens. J Mol Biol 2006; 359 (2) 358-364
  • 87 Yu YS, Zhou H, Yang Q, Chen YG, Li LJ. Widespread occurrence of aminoglycoside resistance due to ArmA methylase in imipenem-resistant Acinetobacter baumannii isolates in China. J Antimicrob Chemother 2007; 60 (2) 454-455
  • 88 Doi Y, Adams JM, Yamane K, Paterson DL. Identification of 16S rRNA methylase-producing Acinetobacter baumannii clinical strains in North America. Antimicrob Agents Chemother 2007; 51 (11) 4209-4210
  • 89 Coyne S, Rosenfeld N, Lambert T, Courvalin P, Périchon B. Overexpression of resistance-nodulation-cell division pump AdeFGH confers multidrug resistance in Acinetobacter baumannii . Antimicrob Agents Chemother 2010; 54 (10) 4389-4393
  • 90 Beceiro A, Llobet E, Aranda J , et al. Phosphoethanolamine modification of lipid A in colistin-resistant variants of Acinetobacter baumannii mediated by the pmrAB two-component regulatory system. Antimicrob Agents Chemother 2011; 55 (7) 3370-3379
  • 91 Pelletier MR, Casella LG, Jones JW , et al. Unique structural modifications are present in the lipopolysaccharide from colistin-resistant strains of Acinetobacter baumannii . Antimicrob Agents Chemother 2013; 57 (10) 4831-4840
  • 92 Arroyo LA, Herrera CM, Fernandez L, Hankins JV, Trent MS, Hancock RE. The pmrCAB operon mediates polymyxin resistance in Acinetobacter baumannii ATCC 17978 and clinical isolates through phosphoethanolamine modification of lipid A. Antimicrob Agents Chemother 2011; 55 (8) 3743-3751
  • 93 Moffatt JH, Harper M, Harrison P , et al. Colistin resistance in Acinetobacter baumannii is mediated by complete loss of lipopolysaccharide production. Antimicrob Agents Chemother 2010; 54 (12) 4971-4977
  • 94 Chopra I, Hawkey PM, Hinton M. Tetracyclines, molecular and clinical aspects. J Antimicrob Chemother 1992; 29 (3) 245-277
  • 95 Coyne S, Courvalin P, Périchon B. Efflux-mediated antibiotic resistance in Acinetobacter spp. Antimicrob Agents Chemother 2011; 55 (3) 947-953
  • 96 Jawad A, Seifert H, Snelling AM, Heritage J, Hawkey PM. Survival of Acinetobacter baumannii on dry surfaces: comparison of outbreak and sporadic isolates. J Clin Microbiol 1998; 36 (7) 1938-1941
  • 97 Thom KA, Johnson JK, Lee MS, Harris AD. Environmental contamination because of multidrug-resistant Acinetobacter baumannii surrounding colonized or infected patients. Am J Infect Control 2011; 39 (9) 711-715
  • 98 Morgan DJ, Liang SY, Smith CL , et al. Frequent multidrug-resistant Acinetobacter baumannii contamination of gloves, gowns, and hands of healthcare workers. Infect Control Hosp Epidemiol 2010; 31 (7) 716-721
  • 99 Enfield KB, Huq NN, Gosseling MF , et al. Control of simultaneous outbreaks of carbapenemase-producing Enterobacteriaceae and extensively drug-resistant Acinetobacter baumannii infection in an intensive care unit using interventions promoted in the Centers for Disease Control and Prevention 2012 carbapenemase-resistant Enterobacteriaceae Toolkit. Infect Control Hosp Epidemiol 2014; 35 (7) 810-817
  • 100 Marchaim D, Navon-Venezia S, Schwartz D , et al. Surveillance cultures and duration of carriage of multidrug-resistant Acinetobacter baumannii . J Clin Microbiol 2007; 45 (5) 1551-1555
  • 101 Doi Y, Onuoha EO, Adams-Haduch JM , et al. Screening for Acinetobacter baumannii colonization by use of sponges. J Clin Microbiol 2011; 49 (1) 154-158
  • 102 Coyle JR, Kaye KS, Taylor T , et al. Effectiveness and cost of implementing an active surveillance screening policy for Acinetobacter baumannii: a Monte Carlo simulation model. Am J Infect Control 2014; 42 (3) 283-287
  • 103 Quale J, Shah N, Kelly P , et al. Activity of polymyxin B and the novel polymyxin analogue CB-182,804 against contemporary Gram-negative pathogens in New York City. Microb Drug Resist 2012; 18 (2) 132-136
  • 104 Bergen PJ, Landersdorfer CB, Zhang J , et al. Pharmacokinetics and pharmacodynamics of 'old' polymyxins: what is new?. Diagn Microbiol Infect Dis 2012; 74 (3) 213-223
  • 105 Owen RJ, Li J, Nation RL, Spelman D. In vitro pharmacodynamics of colistin against Acinetobacter baumannii clinical isolates. J Antimicrob Chemother 2007; 59 (3) 473-477
  • 106 Li J, Rayner CR, Nation RL , et al. Heteroresistance to colistin in multidrug-resistant Acinetobacter baumannii . Antimicrob Agents Chemother 2006; 50 (9) 2946-2950
  • 107 Garonzik SM, Li J, Thamlikitkul V , et al. Population pharmacokinetics of colistin methanesulfonate and formed colistin in critically ill patients from a multicenter study provide dosing suggestions for various categories of patients. Antimicrob Agents Chemother 2011; 55 (7) 3284-3294
  • 108 Plachouras D, Karvanen M, Friberg LE , et al. Population pharmacokinetic analysis of colistin methanesulfonate and colistin after intravenous administration in critically ill patients with infections caused by gram-negative bacteria. Antimicrob Agents Chemother 2009; 53 (8) 3430-3436
  • 109 Mohamed AF, Karaiskos I, Plachouras D , et al. Application of a loading dose of colistin methanesulfonate in critically ill patients: population pharmacokinetics, protein binding, and prediction of bacterial kill. Antimicrob Agents Chemother 2012; 56 (8) 4241-4249
  • 110 Garnacho-Montero J, Ortiz-Leyba C, Jiménez-Jiménez FJ , et al. Treatment of multidrug-resistant Acinetobacter baumannii ventilator-associated pneumonia (VAP) with intravenous colistin: a comparison with imipenem-susceptible VAP. Clin Infect Dis 2003; 36 (9) 1111-1118
  • 111 W S Yapa S, Li J, Patel K. , et al. Pulmonary and systemic pharmacokinetics of inhaled and intravenous colistin methanesulfonate in cystic fibrosis patients: targeting advantage of inhalational administration. Antimicrob Agents Chemother 2014; 58 (5) 2570-2579
  • 112 Tumbarello M, De Pascale G, Trecarichi EM , et al. Effect of aerosolized colistin as adjunctive treatment on the outcomes of microbiologically documented ventilator-associated pneumonia caused by colistin-only susceptible gram-negative bacteria. Chest 2013; 144 (6) 1768-1775
  • 113 Kuo SC, Lee YT, Yang SP , et al. Eradication of multidrug-resistant Acinetobacter baumannii from the respiratory tract with inhaled colistin methanesulfonate: a matched case-control study. Clin Microbiol Infect 2012; 18 (9) 870-876
  • 114 Rattanaumpawan P, Lorsutthitham J, Ungprasert P, Angkasekwinai N, Thamlikitkul V. Randomized controlled trial of nebulized colistimethate sodium as adjunctive therapy of ventilator-associated pneumonia caused by Gram-negative bacteria. J Antimicrob Chemother 2010; 65 (12) 2645-2649
  • 115 Markantonis SL, Markou N, Fousteri M , et al. Penetration of colistin into cerebrospinal fluid. Antimicrob Agents Chemother 2009; 53 (11) 4907-4910
  • 116 Ziaka M, Markantonis SL, Fousteri M , et al. Combined intravenous and intraventricular administration of colistin methanesulfonate in critically ill patients with central nervous system infection. Antimicrob Agents Chemother 2013; 57 (4) 1938-1940
  • 117 Imberti R, Cusato M, Accetta G , et al. Pharmacokinetics of colistin in cerebrospinal fluid after intraventricular administration of colistin methanesulfonate. Antimicrob Agents Chemother 2012; 56 (8) 4416-4421
  • 118 Karaiskos I, Galani L, Baziaka F, Giamarellou H. Intraventricular and intrathecal colistin as the last therapeutic resort for the treatment of multidrug-resistant and extensively drug-resistant Acinetobacter baumannii ventriculitis and meningitis: a literature review. Int J Antimicrob Agents 2013; 41 (6) 499-508
  • 119 Nation RL, Velkov T, Li J. Colistin and polymyxin B: peas in a pod, or chalk and cheese?. Clin Infect Dis 2014; 59 (1) 88-94
  • 120 Akajagbor DS, Wilson SL, Shere-Wolfe KD, Dakum P, Charurat ME, Gilliam BL. Higher incidence of acute kidney injury with intravenous colistimethate sodium compared with polymyxin B in critically ill patients at a tertiary care medical center. Clin Infect Dis 2013; 57 (9) 1300-1303
  • 121 Phe K, Lee Y, McDaneld PM , et al. In vitro assessment and multicenter cohort study of comparative nephrotoxicity rates associated with colistimethate versus polymyxin B therapy. Antimicrob Agents Chemother 2014; 58 (5) 2740-2746
  • 122 Livermore DM. Tigecycline: what is it, and where should it be used?. J Antimicrob Chemother 2005; 56 (4) 611-614
  • 123 Rumbo C, Gato E, López M , et al; Spanish Group of Nosocomial Infections and Mechanisms of Action and Resistance to Antimicrobials (GEIH-GEMARA); Spanish Society of Clinical Microbiology and Infectious Diseases (SEIMC); Spanish Network for Research in Infectious Diseases(REIPI). Contribution of efflux pumps, porins, and β-lactamases to multidrug resistance in clinical isolates of Acinetobacter baumannii . Antimicrob Agents Chemother 2013; 57 (11) 5247-5257
  • 124 Ruzin A, Keeney D, Bradford PA. AdeABC multidrug efflux pump is associated with decreased susceptibility to tigecycline in Acinetobacter calcoaceticus-Acinetobacter baumannii complex. J Antimicrob Chemother 2007; 59 (5) 1001-1004
  • 125 Peleg AY, Potoski BA, Rea R , et al. Acinetobacter baumannii bloodstream infection while receiving tigecycline: a cautionary report. J Antimicrob Chemother 2007; 59 (1) 128-131
  • 126 Koomanachai P, Kim A, Nicolau DP. Pharmacodynamic evaluation of tigecycline against Acinetobacter baumannii in a murine pneumonia model. J Antimicrob Chemother 2009; 63 (5) 982-987
  • 127 Muralidharan G, Micalizzi M, Speth J, Raible D, Troy S. Pharmacokinetics of tigecycline after single and multiple doses in healthy subjects. Antimicrob Agents Chemother 2005; 49 (1) 220-229
  • 128 Kim NH, Hwang JH, Song KH , et al. Tigecycline in carbapenem-resistant Acinetobacter baumannii bacteraemia: susceptibility and clinical outcome. Scand J Infect Dis 2013; 45 (4) 315-319
  • 129 Freire AT, Melnyk V, Kim MJ , et al; 311 Study Group. Comparison of tigecycline with imipenem/cilastatin for the treatment of hospital-acquired pneumonia. Diagn Microbiol Infect Dis 2010; 68 (2) 140-151
  • 130 Ramirez J, Dartois N, Gandjini H, Yan JL, Korth-Bradley J, McGovern PC. Randomized phase 2 trial to evaluate the clinical efficacy of two high-dosage tigecycline regimens versus imipenem-cilastatin for treatment of hospital-acquired pneumonia. Antimicrob Agents Chemother 2013; 57 (4) 1756-1762
  • 131 Lee YT, Tsao SM, Hsueh PR. Clinical outcomes of tigecycline alone or in combination with other antimicrobial agents for the treatment of patients with healthcare-associated multidrug-resistant Acinetobacter baumannii infections. Eur J Clin Microbiol Infect Dis 2013; 32 (9) 1211-1220
  • 132 Noguchi JK, Gill MA. Sulbactam: a β-lactamase inhibitor. Clin Pharm 1988; 7 (1) 37-51
  • 133 Rafailidis PI, Ioannidou EN, Falagas ME. Ampicillin/sulbactam: current status in severe bacterial infections. Drugs 2007; 67 (13) 1829-1849
  • 134 Swenson JM, Killgore GE, Tenover FC. Antimicrobial susceptibility testing of Acinetobacter spp. by NCCLS broth microdilution and disk diffusion methods. J Clin Microbiol 2004; 42 (11) 5102-5108
  • 135 Reddy T, Chopra T, Marchaim D , et al. Trends in antimicrobial resistance of Acinetobacter baumannii isolates from a metropolitan Detroit health system. Antimicrob Agents Chemother 2010; 54 (5) 2235-2238
  • 136 Yokoyama Y, Matsumoto K, Ikawa K , et al. Pharmacokinetic/pharmacodynamic evaluation of sulbactam against Acinetobacter baumannii in in vitro and murine thigh and lung infection models. Int J Antimicrob Agents 2014; 43 (6) 547-552
  • 137 Housman ST, Hagihara M, Nicolau DP, Kuti JL. In vitro pharmacodynamics of human-simulated exposures of ampicillin/sulbactam, doripenem and tigecycline alone and in combination against multidrug-resistant Acinetobacter baumannii . J Antimicrob Chemother 2013; 68 (10) 2296-2304
  • 138 Jaruratanasirikul S, Wongpoowarak W, Aeinlang N, Jullangkoon M. Pharmacodynamics modeling to optimize dosage regimens of sulbactam. Antimicrob Agents Chemother 2013; 57 (7) 3441-3444
  • 139 Betrosian AP, Frantzeskaki F, Xanthaki A, Douzinas EE. Efficacy and safety of high-dose ampicillin/sulbactam vs. colistin as monotherapy for the treatment of multidrug resistant Acinetobacter baumannii ventilator-associated pneumonia. J Infect 2008; 56 (6) 432-436
  • 140 Wood GC, Hanes SD, Croce MA, Fabian TC, Boucher BA. Comparison of ampicillin-sulbactam and imipenem-cilastatin for the treatment of acinetobacter ventilator-associated pneumonia. Clin Infect Dis 2002; 34 (11) 1425-1430
  • 141 Oliveira MS, Prado GV, Costa SF, Grinbaum RS, Levin AS. Ampicillin/sulbactam compared with polymyxins for the treatment of infections caused by carbapenem-resistant Acinetobacter spp. J Antimicrob Chemother 2008; 61 (6) 1369-1375
  • 142 Song JY, Kee SY, Hwang IS , et al. In vitro activities of carbapenem/sulbactam combination, colistin, colistin/rifampicin combination and tigecycline against carbapenem-resistant Acinetobacter baumannii . J Antimicrob Chemother 2007; 60 (2) 317-322
  • 143 Giamarellos-Bourboulis EJ, Xirouchaki E, Giamarellou H. Interactions of colistin and rifampin on multidrug-resistant Acinetobacter baumannii . Diagn Microbiol Infect Dis 2001; 40 (3) 117-120
  • 144 Pachón-Ibáñez ME, Docobo-Pérez F, López-Rojas R , et al. Efficacy of rifampin and its combinations with imipenem, sulbactam, and colistin in experimental models of infection caused by imipenem-resistant Acinetobacter baumannii . Antimicrob Agents Chemother 2010; 54 (3) 1165-1172
  • 145 Pantopoulou A, Giamarellos-Bourboulis EJ, Raftogannis M , et al. Colistin offers prolonged survival in experimental infection by multidrug-resistant Acinetobacter baumannii: the significance of co-administration of rifampicin. Int J Antimicrob Agents 2007; 29 (1) 51-55
  • 146 Aydemir H, Akduman D, Piskin N , et al. Colistin vs. the combination of colistin and rifampicin for the treatment of carbapenem-resistant Acinetobacter baumannii ventilator-associated pneumonia. Epidemiol Infect 2013; 141 (6) 1214-1222
  • 147 Durante-Mangoni E, Signoriello G, Andini R , et al. Colistin and rifampicin compared with colistin alone for the treatment of serious infections due to extensively drug-resistant Acinetobacter baumannii: a multicenter, randomized clinical trial. Clin Infect Dis 2013; 57 (3) 349-358
  • 148 Santimaleeworagun W, Wongpoowarak P, Chayakul P, Pattharachayakul S, Tansakul P, Garey KW. In vitro activity of colistin or sulbactam in combination with fosfomycin or imipenem against clinical isolates of carbapenem-resistant Acinetobacter baumannii producing OXA-23 carbapenemases. Southeast Asian J Trop Med Public Health 2011; 42 (4) 890-900
  • 149 Falagas ME, Kanellopoulou MD, Karageorgopoulos DE , et al. Antimicrobial susceptibility of multidrug-resistant Gram negative bacteria to fosfomycin. Eur J Clin Microbiol Infect Dis 2008; 27 (6) 439-443
  • 150 Sirijatuphat R, Thamlikitkul V. Colistin versus colistin plus fosfomycin for treatment of carbapenem-resistant Acinetobacter baumannii infections: A preliminary study. Antimicrob Agents Chemother 2014; 58 (9) 5598-5601
  • 151 Shields RK, Clancy CJ, Gillis LM , et al. Epidemiology, clinical characteristics and outcomes of extensively drug-resistant Acinetobacter baumannii infections among solid organ transplant recipients. PLoS ONE 2012; 7 (12) e52349
  • 152 López-Cortés LE, Cisneros JM, Fernández-Cuenca F , et al. Monotherapy versus combination therapy for sepsis due to multidrug-resistant Acinetobacter baumannii: analysis of a multicenter prospective cohort. J Antimicrob Chemother 2014; 69 (11) 3119-26
  • 153 Niu C, Clemmer KM, Bonomo RA, Rather PN. Isolation and characterization of an autoinducer synthase from Acinetobacter baumannii . J Bacteriol 2008; 190 (9) 3386-3392
  • 154 Loehfelm TW, Luke NR, Campagnari AA. Identification and characterization of an Acinetobacter baumannii biofilm-associated protein. J Bacteriol 2008; 190 (3) 1036-1044
  • 155 Brossard KA, Campagnari AA. The Acinetobacter baumannii biofilm-associated protein plays a role in adherence to human epithelial cells. Infect Immun 2012; 80 (1) 228-233
  • 156 Tomaras AP, Flagler MJ, Dorsey CW, Gaddy JA, Actis LA. Characterization of a two-component regulatory system from Acinetobacter baumannii that controls biofilm formation and cellular morphology. Microbiology 2008; 154 (Pt 11): 3398-3409
  • 157 Tomaras AP, Dorsey CW, Edelmann RE, Actis LA. Attachment to and biofilm formation on abiotic surfaces by Acinetobacter baumannii: involvement of a novel chaperone-usher pili assembly system. Microbiology 2003; 149 (Pt 12): 3473-3484
  • 158 Choi AH, Slamti L, Avci FY, Pier GB, Maira-Litrán T. The pgaABCD locus of Acinetobacter baumannii encodes the production of poly-β-1-6-N-acetylglucosamine, which is critical for biofilm formation. J Bacteriol 2009; 191 (19) 5953-5963
  • 159 Lees-Miller RG, Iwashkiw JA, Scott NE , et al. A common pathway for O-linked protein-glycosylation and synthesis of capsule in Acinetobacter baumannii . Mol Microbiol 2013; 89 (5) 816-830
  • 160 Iwashkiw JA, Seper A, Weber BS , et al. Identification of a general O-linked protein glycosylation system in Acinetobacter baumannii and its role in virulence and biofilm formation. PLoS Pathog 2012; 8 (6) e1002758
  • 161 Tada T, Miyoshi-Akiyama T, Kato Y , et al. Emergence of 16S rRNA methylase-producing Acinetobacter baumannii and Pseudomonas aeruginosa isolates in hospitals in Vietnam. BMC Infect Dis 2013; 13: 251
  • 162 Taitt CR, Leski TA, Stockelman MG , et al. Antimicrobial resistance determinants in Acinetobacter baumannii isolates taken from military treatment facilities. Antimicrob Agents Chemother 2014; 58 (2) 767-781