Semin Respir Crit Care Med 2019; 40(01): 031-039
DOI: 10.1055/s-0039-1683996
Review Article
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Pathogenesis of Acute Respiratory Distress Syndrome

Laura A. Huppert
1   Department of Medicine, University of California, San Francisco, San Francisco, California
,
Michael A. Matthay
2   Department of Medicine, Cardiovascular Research Institute, University of California, San Francisco, San Francisco, California
3   Department of Anesthesia, Cardiovascular Research Institute, University of California, San Francisco, San Francisco, California
,
Lorraine B. Ware
4   Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee
› Author Affiliations
Further Information

Publication History

Publication Date:
06 May 2019 (online)

Abstract

Acute respiratory distress syndrome (ARDS) is a syndrome of acute respiratory failure caused by noncardiogenic pulmonary edema. Despite five decades of basic and clinical research, there is still no effective pharmacotherapy for this condition and the treatment remains primarily supportive. It is critical to study the molecular and physiologic mechanisms that cause ARDS to improve our understanding of this syndrome and reduce mortality. The goal of this review is to describe our current understanding of the pathogenesis and pathophysiology of ARDS. First, we will describe how pulmonary edema fluid accumulates in ARDS due to lung inflammation and increased alveolar endothelial and epithelial permeabilities. Next, we will review how pulmonary edema fluid is normally cleared in the uninjured lung, and describe how these pathways are disrupted in ARDS. Finally, we will explain how clinical trials and preclinical studies of novel therapeutic agents have further refined our understanding of this condition, highlighting, in particular, the study of mesenchymal stromal cells in the treatment of ARDS.

 
  • References

  • 1 Matthay MA, Ware LB, Zimmerman GA. The acute respiratory distress syndrome. J Clin Invest 2012; 122 (08) 2731-2740
  • 2 Ferguson ND, Fan E, Camporota L. , et al. The Berlin definition of ARDS: an expanded rationale, justification, and supplementary material. Intensive Care Med 2012; 38 (10) 1573-1582
  • 3 Villar J, Blanco J, Kacmarek RM. Current incidence and outcome of the acute respiratory distress syndrome. Curr Opin Crit Care 2016; 22 (01) 1-6
  • 4 Rubenfeld GD, Caldwell E, Peabody E. , et al. Incidence and outcomes of acute lung injury. N Engl J Med 2005; 353 (16) 1685-1693
  • 5 Máca J, Jor O, Holub M. , et al. Past and present ARDS mortality rates: a systematic review. Respir Care 2017; 62 (01) 113-122
  • 6 Ashbaugh DG, Bigelow DB, Petty TL, Levine BE. Acute respiratory distress in adults. Lancet 1967; 2 (7511): 319-323
  • 7 Matthay MA, Folkesson HG, Clerici C. Lung epithelial fluid transport and the resolution of pulmonary edema. Physiol Rev 2002; 82 (03) 569-600
  • 8 Opitz B, van Laak V, Eitel J, Suttorp N. Innate immune recognition in infectious and noninfectious diseases of the lung. Am J Respir Crit Care Med 2010; 181 (12) 1294-1309
  • 9 Mantovani A, Cassatella MA, Costantini C, Jaillon S. Neutrophils in the activation and regulation of innate and adaptive immunity. Nat Rev Immunol 2011; 11 (08) 519-531
  • 10 Imai Y, Kuba K, Neely GG. , et al. Identification of oxidative stress and Toll-like receptor 4 signaling as a key pathway of acute lung injury. Cell 2008; 133 (02) 235-249
  • 11 Vestweber D. VE-cadherin: the major endothelial adhesion molecule controlling cellular junctions and blood vessel formation. Arterioscler Thromb Vasc Biol 2008; 28 (02) 223-232
  • 12 Corada M, Mariotti M, Thurston G. , et al. Vascular endothelial-cadherin is an important determinant of microvascular integrity in vivo. Proc Natl Acad Sci U S A 1999; 96 (17) 9815-9820
  • 13 Schulte D, Küppers V, Dartsch N. , et al. Stabilizing the VE-cadherin-catenin complex blocks leukocyte extravasation and vascular permeability. EMBO J 2011; 30 (20) 4157-4170
  • 14 Broermann A, Winderlich M, Block H. , et al. Dissociation of VE-PTP from VE-cadherin is required for leukocyte extravasation and for VEGF-induced vascular permeability in vivo. J Exp Med 2011; 208 (12) 2393-2401
  • 15 Zemans RL, Matthay MA. Bench-to-bedside review: the role of the alveolar epithelium in the resolution of pulmonary edema in acute lung injury. Crit Care 2004; 8 (06) 469-477
  • 16 Wiener-Kronish JP, Albertine KH, Matthay MA. Differential responses of the endothelial and epithelial barriers of the lung in sheep to Escherichia coli endotoxin. J Clin Invest 1991; 88 (03) 864-875
  • 17 Ginzberg HH, Shannon PT, Suzuki T. , et al. Leukocyte elastase induces epithelial apoptosis: role of mitochondrial permeability changes and Akt. Am J Physiol Gastrointest Liver Physiol 2004; 287 (01) G286-G298
  • 18 Zemans RL, Briones N, Campbell M. , et al. Neutrophil transmigration triggers repair of the lung epithelium via β-catenin signaling. . Proceedings of the National Academy of Sciences 2011 :201110144
  • 19 Ware LB, Zhao Z, Koyama T. , et al. Long-term ozone exposure increases the risk of developing the acute respiratory distress syndrome. Am J Respir Crit Care Med 2016; 193 (10) 1143-1150
  • 20 Reilly JP, Zhao Z, Shashaty MGS. , et al. Low to moderate air pollutant exposure and acute respiratory distress syndrome after severe trauma. Am J Respir Crit Care Med 2019; 199 (01) 62-70
  • 21 Calfee CS, Matthay MA, Eisner MD. , et al. Active and passive cigarette smoking and acute lung injury after severe blunt trauma. Am J Respir Crit Care Med 2011; 183 (12) 1660-1665
  • 22 Diamond JM, Lee JC, Kawut SM. , et al; Lung Transplant Outcomes Group. Clinical risk factors for primary graft dysfunction after lung transplantation. Am J Respir Crit Care Med 2013; 187 (05) 527-534
  • 23 Calfee CS, Matthay MA, Kangelaris KN. , et al. Cigarette smoke exposure and the acute respiratory distress syndrome. Crit Care Med 2015; 43 (09) 1790-1797
  • 24 Moss M, Burnham EL. Chronic alcohol abuse, acute respiratory distress syndrome, and multiple organ dysfunction. Crit Care Med 2003; 31 (4, Suppl): S207-S212
  • 25 Gao L, Barnes KC. Recent advances in genetic predisposition to clinical acute lung injury. Am J Physiol Lung Cell Mol Physiol 2009; 296 (05) L713-L725
  • 26 Christie JD, Wurfel MM, Feng R. , et al; Trauma ALI SNP Consortium (TASC) investigators. Genome wide association identifies PPFIA1 as a candidate gene for acute lung injury risk following major trauma. PLoS One 2012; 7 (01) e28268
  • 27 Meyer NJ, Li M, Feng R. , et al. ANGPT2 genetic variant is associated with trauma-associated acute lung injury and altered plasma angiopoietin-2 isoform ratio. Am J Respir Crit Care Med 2011; 183 (10) 1344-1353
  • 28 Glavan BJ, Holden TD, Goss CH. , et al; ARDSnet Investigators. Genetic variation in the FAS gene and associations with acute lung injury. Am J Respir Crit Care Med 2011; 183 (03) 356-363
  • 29 Kangelaris KN, Sapru A, Calfee CS. , et al; National Heart, Lung, and Blood Institute ARDS Network. The association between a Darc gene polymorphism and clinical outcomes in African American patients with acute lung injury. Chest 2012; 141 (05) 1160-1169
  • 30 Staub NC. The pathogenesis of pulmonary edema. Prog Cardiovasc Dis 1980; 23 (01) 53-80
  • 31 Staub NC. Pulmonary edema due to increased microvascular permeability. Annu Rev Med 1981; 32: 291-312
  • 32 Johnson MD, Widdicombe JH, Allen L, Barbry P, Dobbs LG. Alveolar epithelial type I cells contain transport proteins and transport sodium, supporting an active role for type I cells in regulation of lung liquid homeostasis. Proc Natl Acad Sci U S A 2002; 99 (04) 1966-1971
  • 33 Canessa CM, Schild L, Buell G. , et al. Amiloride-sensitive epithelial Na+ channel is made of three homologous subunits. Nature 1994; 367 (6462): 463-467
  • 34 Matalon S, O'Brodovich H. Sodium channels in alveolar epithelial cells: molecular characterization, biophysical properties, and physiological significance. Annu Rev Physiol 1999; 61: 627-661
  • 35 Hummler E, Barker P, Gatzy J. , et al. Early death due to defective neonatal lung liquid clearance in α-ENaC-deficient mice. Nat Genet 1996; 12 (03) 325-328
  • 36 Fang X, Fukuda N, Barbry P, Sartori C, Verkman AS, Matthay MA. Novel role for CFTR in fluid absorption from the distal airspaces of the lung. J Gen Physiol 2002; 119 (02) 199-207
  • 37 Verkman AS, Matthay MA, Song Y. Aquaporin water channels and lung physiology. Am J Physiol Lung Cell Mol Physiol 2000; 278 (05) L867-L879
  • 38 Eaton DC, Chen J, Ramosevac S, Matalon S, Jain L. Regulation of Na+ channels in lung alveolar type II epithelial cells. Proc Am Thorac Soc 2004; 1 (01) 10-16
  • 39 Mutlu GM, Sznajder JI. Mechanisms of pulmonary edema clearance. Am J Physiol Lung Cell Mol Physiol 2005; 289 (05) L685-L695
  • 40 Matthay MA, Wiener-Kronish JP. Intact epithelial barrier function is critical for the resolution of alveolar edema in humans. Am Rev Respir Dis 1990; 142 (6 Pt 1): 1250-1257
  • 41 Ware LB, Matthay MA. Alveolar fluid clearance is impaired in the majority of patients with acute lung injury and the acute respiratory distress syndrome. Am J Respir Crit Care Med 2001; 163 (06) 1376-1383
  • 42 Vivona ML, Matthay M, Chabaud MB, Friedlander G, Clerici C. Hypoxia reduces alveolar epithelial sodium and fluid transport in rats: reversal by β-adrenergic agonist treatment. Am J Respir Cell Mol Biol 2001; 25 (05) 554-561
  • 43 Vadász I, Raviv S, Sznajder JI. Alveolar epithelium and Na,K-ATPase in acute lung injury. Intensive Care Med 2007; 33 (07) 1243-1251
  • 44 Briva A, Vadász I, Lecuona E. , et al. High CO2 levels impair alveolar epithelial function independently of pH. PLoS One 2007; 2 (11) e1238
  • 45 Frank JA, Gutierrez JA, Jones KD, Allen L, Dobbs L, Matthay MA. Low tidal volume reduces epithelial and endothelial injury in acid-injured rat lungs. Am J Respir Crit Care Med 2002; 165 (02) 242-249
  • 46 Brower RG, Matthay MA, Morris A, Schoenfeld D, Thompson BT, Wheeler A. ; Acute Respiratory Distress Syndrome Network. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med 2000; 342 (18) 1301-1308
  • 47 Schuller D, Schuster DP. Fluid-management strategies in acute lung injury. N Engl J Med 2006; 355 (11) 1175 , author reply 1176
  • 48 Pugin J, Verghese G, Widmer MC, Matthay MA. The alveolar space is the site of intense inflammatory and profibrotic reactions in the early phase of acute respiratory distress syndrome. Crit Care Med 1999; 27 (02) 304-312
  • 49 Olman MA, White KE, Ware LB. , et al. Pulmonary edema fluid from patients with early lung injury stimulates fibroblast proliferation through IL-1 β-induced IL-6 expression. J Immunol 2004; 172 (04) 2668-2677
  • 50 Ware LB, Matthay MA. The acute respiratory distress syndrome. N Engl J Med 2000; 342 (18) 1334-1349
  • 51 Fukuda N, Jayr C, Lazrak A. , et al. Mechanisms of TNF-α stimulation of amiloride-sensitive sodium transport across alveolar epithelium. Am J Physiol Lung Cell Mol Physiol 2001; 280 (06) L1258-L1265
  • 52 Elia N, Tapponnier M, Matthay MA. , et al. Functional identification of the alveolar edema reabsorption activity of murine tumor necrosis factor-α. Am J Respir Crit Care Med 2003; 168 (09) 1043-1050
  • 53 Dagenais A, Fréchette R, Yamagata Y. , et al. Downregulation of ENaC activity and expression by TNF-α in alveolar epithelial cells. Am J Physiol Lung Cell Mol Physiol 2004; 286 (02) L301-L311
  • 54 Roux J, Kawakatsu H, Gartland B. , et al. Interleukin-1β decreases expression of the epithelial sodium channel α-subunit in alveolar epithelial cells via a p38 MAPK-dependent signaling pathway. J Biol Chem 2005; 280 (19) 18579-18589
  • 55 Fang X, Song Y, Hirsch J. , et al. Contribution of CFTR to apical-basolateral fluid transport in cultured human alveolar epithelial type II cells. Am J Physiol Lung Cell Mol Physiol 2006; 290 (02) L242-L249
  • 56 Lee JW, Fang X, Dolganov G. , et al. Acute lung injury edema fluid decreases net fluid transport across human alveolar epithelial type II cells. J Biol Chem 2007; 282 (33) 24109-24119
  • 57 Zemans RL, Colgan SP, Downey GP. Transepithelial migration of neutrophils: mechanisms and implications for acute lung injury. Am J Respir Cell Mol Biol 2009; 40 (05) 519-535
  • 58 Calfee CS, Matthay MA. Clinical immunology: culprits with evolutionary ties. Nature 2010; 464 (7285): 41-42
  • 59 Hung CF, Mittelsteadt KL, Brauer R. , et al. Lung pericyte-like cells are functional interstitial immune sentinel cells. Am J Physiol Lung Cell Mol Physiol 2017; 312 (04) L556-L567
  • 60 Parsons PE, Eisner MD, Thompson BT. , et al; NHLBI Acute Respiratory Distress Syndrome Clinical Trials Network. Lower tidal volume ventilation and plasma cytokine markers of inflammation in patients with acute lung injury. Crit Care Med 2005; 33 (01) 1-6 , discussion 230–232
  • 61 Adamson IY, Bowden DH. The type 2 cell as progenitor of alveolar epithelial regeneration. A cytodynamic study in mice after exposure to oxygen. Lab Invest 1974; 30 (01) 35-42
  • 62 Kim CF, Jackson EL, Woolfenden AE. , et al. Identification of bronchioalveolar stem cells in normal lung and lung cancer. Cell 2005; 121 (06) 823-835
  • 63 Aggarwal NR, King LS, D'Alessio FR. Diverse macrophage populations mediate acute lung inflammation and resolution. Am J Physiol Lung Cell Mol Physiol 2014; 306 (08) L709-L725
  • 64 Serhan CN, Brain SD, Buckley CD. , et al. Resolution of inflammation: state of the art, definitions and terms. FASEB J 2007; 21 (02) 325-332
  • 65 Bratton DL, Henson PM. Neutrophil clearance: when the party is over, clean-up begins. Trends Immunol 2011; 32 (08) 350-357
  • 66 D'Alessio FR, Tsushima K, Aggarwal NR. , et al. CD4+CD25+Foxp3+ Tregs resolve experimental lung injury in mice and are present in humans with acute lung injury. J Clin Invest 2009; 119 (10) 2898-2913
  • 67 Narasaraju T, Yang E, Samy RP. , et al. Excessive neutrophils and neutrophil extracellular traps contribute to acute lung injury of influenza pneumonitis. Am J Pathol 2011; 179 (01) 199-210
  • 68 Amato MB, Barbas CS, Medeiros DM. , et al. Effect of a protective-ventilation strategy on mortality in the acute respiratory distress syndrome. N Engl J Med 1998; 338 (06) 347-354
  • 69 Eichacker PQ, Gerstenberger EP, Banks SM, Cui X, Natanson C. Meta-analysis of acute lung injury and acute respiratory distress syndrome trials testing low tidal volumes. Am J Respir Crit Care Med 2002; 166 (11) 1510-1514
  • 70 Villar J, Kacmarek RM, Pérez-Méndez L, Aguirre-Jaime A. A high positive end-expiratory pressure, low tidal volume ventilatory strategy improves outcome in persistent acute respiratory distress syndrome: a randomized, controlled trial. Crit Care Med 2006; 34 (05) 1311-1318
  • 71 Calfee CS, Ware LB, Eisner MD. , et al; NHLBI ARDS Network. Plasma receptor for advanced glycation end products and clinical outcomes in acute lung injury. Thorax 2008; 63 (12) 1083-1089
  • 72 Ranieri VM, Suter PM, Tortorella C. , et al. Effect of mechanical ventilation on inflammatory mediators in patients with acute respiratory distress syndrome: a randomized controlled trial. JAMA 1999; 282 (01) 54-61
  • 73 Staub NC. Pulmonary edema: physiologic approaches to management. Chest 1978; 74 (05) 559-564
  • 74 National Heart, Lung, and Blood Institute Acute Respiratory Distress Syndrome (ARDS) Clinical Trials Network. Comparison of two fluid-management strategies in acute lung injury. N Engl J Med 2006; 354: 2564-2575
  • 75 Calfee CS, Gallagher D, Abbott J, Thompson BT, Matthay MA. ; NHLBI ARDS Network. Plasma angiopoietin-2 in clinical acute lung injury: prognostic and pathogenetic significance. Crit Care Med 2012; 40 (06) 1731-1737
  • 76 Bernard GR, Luce JM, Sprung CL. , et al. High-dose corticosteroids in patients with the adult respiratory distress syndrome. N Engl J Med 1987; 317 (25) 1565-1570
  • 77 Meduri GU, Headley AS, Golden E. , et al. Effect of prolonged methylprednisolone therapy in unresolving acute respiratory distress syndrome: a randomized controlled trial. JAMA 1998; 280 (02) 159-165
  • 78 National Heart, Lung, and Blood Institute Acute Respiratory Distress Syndrome (ARDS) Clinical Trials Network. Efficacy and safety of corticosteroids for persistent acute respiratory distress syndrome. N Engl J Med 2006; 354: 1671-1684
  • 79 Nemunaitis J, Rabinowe SN, Singer JW. , et al. Recombinant granulocyte-macrophage colony-stimulating factor after autologous bone marrow transplantation for lymphoid cancer. N Engl J Med 1991; 324 (25) 1773-1778
  • 80 Bernard GR, Wheeler AP, Arons MM. , et al; The Antioxidant in ARDS Study Group. A trial of antioxidants N-acetylcysteine and procysteine in ARDS. Chest 1997; 112 (01) 164-172
  • 81 Liu KD, Levitt J, Zhuo H. , et al. Randomized clinical trial of activated protein C for the treatment of acute lung injury. Am J Respir Crit Care Med 2008; 178 (06) 618-623
  • 82 Calfee CS, Delucchi K, Parsons PE, Thompson BT, Ware LB, Matthay MA. ; NHLBI ARDS Network. Subphenotypes in acute respiratory distress syndrome: latent class analysis of data from two randomised controlled trials. Lancet Respir Med 2014; 2 (08) 611-620
  • 83 Famous KR, Delucchi K, Ware LB. , et al; ARDS Network. Acute respiratory distress syndrome subphenotypes respond differently to randomized fluid management strategy. Am J Respir Crit Care Med 2017; 195 (03) 331-338
  • 84 McAuley DF, Laffey JG, O'Kane CM. , et al; HARP-2 Investigators; Irish Critical Care Trials Group. Simvastatin in the acute respiratory distress syndrome. N Engl J Med 2014; 371 (18) 1695-1703
  • 85 Calfee CS, Delucchi KL, Sinha P. , et al; Irish Critical Care Trials Group. Acute respiratory distress syndrome subphenotypes and differential response to simvastatin: secondary analysis of a randomised controlled trial. Lancet Respir Med 2018; 6 (09) 691-698
  • 86 Lee MJ, Thangada S, Claffey KP. , et al. Vascular endothelial cell adherens junction assembly and morphogenesis induced by sphingosine-1-phosphate. Cell 1999; 99 (03) 301-312
  • 87 Xiong Y, Hla T. S1P control of endothelial integrity. In: Sphingosine-1-Phosphate Signaling in Immunology and Infectious Diseases. Cham, Switzerland: Springer; 2014: 85-105
  • 88 Teijaro JR, Walsh KB, Cahalan S. , et al. Endothelial cells are central orchestrators of cytokine amplification during influenza virus infection. Cell 2011; 146 (06) 980-991
  • 89 Obinata H, Hla T. Sphingosine 1-phosphate in coagulation and inflammation. Semin Immunopathol 2012; 34 (01) 73-91
  • 90 London NR, Zhu W, Bozza FA. , et al. Targeting Robo4-dependent Slit signaling to survive the cytokine storm in sepsis and influenza. Sci Transl Med 2010; 2 (23) 23ra19
  • 91 Friedenstein AJ, Petrakova KV, Kurolesova AI, Frolova GP. Heterotopic of bone marrow. Analysis of precursor cells for osteogenic and hematopoietic tissues. Transplantation 1968; 6 (02) 230-247
  • 92 Németh K, Leelahavanichkul A, Yuen PS. , et al. Bone marrow stromal cells attenuate sepsis via prostaglandin E(2)-dependent reprogramming of host macrophages to increase their interleukin-10 production. Nat Med 2009; 15 (01) 42-49
  • 93 Mei SH, Haitsma JJ, Dos Santos CC. , et al. Mesenchymal stem cells reduce inflammation while enhancing bacterial clearance and improving survival in sepsis. Am J Respir Crit Care Med 2010; 182 (08) 1047-1057
  • 94 Lee RH, Seo MJ, Reger RL. , et al. Multipotent stromal cells from human marrow home to and promote repair of pancreatic islets and renal glomeruli in diabetic NOD/scid mice. Proc Natl Acad Sci U S A 2006; 103 (46) 17438-17443
  • 95 Li TS, Hayashi M, Ito H. , et al. Regeneration of infarcted myocardium by intramyocardial implantation of ex vivo transforming growth factor-β-preprogrammed bone marrow stem cells. Circulation 2005; 111 (19) 2438-2445
  • 96 Parekkadan B, van Poll D, Suganuma K. , et al. Mesenchymal stem cell-derived molecules reverse fulminant hepatic failure. PLoS One 2007; 2 (09) e941
  • 97 Tögel F, Hu Z, Weiss K, Isaac J, Lange C, Westenfelder C. Administered mesenchymal stem cells protect against ischemic acute renal failure through differentiation-independent mechanisms. Am J Physiol Renal Physiol 2005; 289 (01) F31-F42
  • 98 Ullah I, Subbarao RB, Rho GJ. Human mesenchymal stem cells - current trends and future prospective. Biosci Rep 2015; 35 (02) e00191
  • 99 Weiss DJ, Cruz FF. A placebo-controlled, randomized trial of mesenchymal stromal cells combined with one-way endobronchial valve therapy in severe COPD. Cytotherapy 2016; 18: S17
  • 100 Hu SL, Luo HS, Li JT. , et al. Functional recovery in acute traumatic spinal cord injury after transplantation of human umbilical cord mesenchymal stem cells. Crit Care Med 2010; 38 (11) 2181-2189
  • 101 Le Blanc K, Frassoni F, Ball L. , et al; Developmental Committee of the European Group for Blood and Marrow Transplantation. Mesenchymal stem cells for treatment of steroid-resistant, severe, acute graft-versus-host disease: a phase II study. Lancet 2008; 371 (9624): 1579-1586
  • 102 Matthay MA, Pati S, Lee JW. Concise review: mesenchymal stem (stromal) cells: biology and preclinical evidence for therapeutic potential for organ dysfunction following trauma or sepsis. Stem Cells 2017; 35 (02) 316-324
  • 103 Gupta N, Su X, Popov B, Lee JW, Serikov V, Matthay MA. Intrapulmonary delivery of bone marrow-derived mesenchymal stem cells improves survival and attenuates endotoxin-induced acute lung injury in mice. J Immunol 2007; 179 (03) 1855-1863
  • 104 Gupta N, Krasnodembskaya A, Kapetanaki M. , et al. Mesenchymal stem cells enhance survival and bacterial clearance in murine Escherichia coli pneumonia. Thorax 2012; 67 (06) 533-539
  • 105 Devaney J, Horie S, Masterson C. , et al. Human mesenchymal stromal cells decrease the severity of acute lung injury induced by E. coli in the rat. Thorax 2015; 70 (07) 625-635
  • 106 Lee JW, Krasnodembskaya A, McKenna DH, Song Y, Abbott J, Matthay MA. Therapeutic effects of human mesenchymal stem cells in ex vivo human lungs injured with live bacteria. Am J Respir Crit Care Med 2013; 187 (07) 751-760
  • 107 Walter J, Ware LB, Matthay MA. Mesenchymal stem cells: mechanisms of potential therapeutic benefit in ARDS and sepsis. Lancet Respir Med 2014; 2 (12) 1016-1026
  • 108 Liechty KW, MacKenzie TC, Shaaban AF. , et al. Human mesenchymal stem cells engraft and demonstrate site-specific differentiation after in utero transplantation in sheep. Nat Med 2000; 6 (11) 1282-1286
  • 109 Wong AP, Dutly AE, Sacher A. , et al. Targeted cell replacement with bone marrow cells for airway epithelial regeneration. Am J Physiol Lung Cell Mol Physiol 2007; 293 (03) L740-L752
  • 110 Ortiz LA, Dutreil M, Fattman C. , et al. Interleukin 1 receptor antagonist mediates the antiinflammatory and antifibrotic effect of mesenchymal stem cells during lung injury. Proc Natl Acad Sci U S A 2007; 104 (26) 11002-11007
  • 111 Danchuk S, Ylostalo JH, Hossain F. , et al. Human multipotent stromal cells attenuate lipopolysaccharide-induced acute lung injury in mice via secretion of tumor necrosis factor-α-induced protein 6. Stem Cell Res Ther 2011; 2 (03) 27
  • 112 Ionescu L, Byrne RN, van Haaften T. , et al. Stem cell conditioned medium improves acute lung injury in mice: in vivo evidence for stem cell paracrine action. Am J Physiol Lung Cell Mol Physiol 2012; 303 (11) L967-L977
  • 113 Fang X, Abbott J, Cheng L. , et al. Human mesenchymal stem (stromal) cells promote the resolution of acute lung injury in part through lipoxin A4. J Immunol 2015; 195 (03) 875-881
  • 114 Fang X, Neyrinck AP, Matthay MA, Lee JW. Allogeneic human mesenchymal stem cells restore epithelial protein permeability in cultured human alveolar type II cells by secretion of angiopoietin-1. J Biol Chem 2010; 285 (34) 26211-26222
  • 115 Goolaerts A, Pellan-Randrianarison N, Larghero J. , et al. Conditioned media from mesenchymal stromal cells restore sodium transport and preserve epithelial permeability in an in vitro model of acute alveolar injury. Am J Physiol Lung Cell Mol Physiol 2014; 306 (11) L975-L985
  • 116 Lee JW, Fang X, Gupta N, Serikov V, Matthay MA. Allogeneic human mesenchymal stem cells for treatment of E. coli endotoxin-induced acute lung injury in the ex vivo perfused human lung. . Proceedings of the National Academy of Sciences 2009 :pnas-0907996106
  • 117 McAuley DF, Curley GF, Hamid UI. , et al. Clinical grade allogeneic human mesenchymal stem cells restore alveolar fluid clearance in human lungs rejected for transplantation. Am J Physiol Lung Cell Mol Physiol 2014; 306 (09) L809-L815
  • 118 Raffaghello L, Bianchi G, Bertolotto M. , et al. Human mesenchymal stem cells inhibit neutrophil apoptosis: a model for neutrophil preservation in the bone marrow niche. Stem Cells 2008; 26 (01) 151-162
  • 119 Laffey JG, Matthay MA. Fifty years of research in ARDS. Cell-based therapy for acute respiratory distress syndrome. Biology and potential therapeutic value. Am J Respir Crit Care Med 2017; 196 (03) 266-273
  • 120 Islam MN, Das SR, Emin MT. , et al. Mitochondrial transfer from bone-marrow-derived stromal cells to pulmonary alveoli protects against acute lung injury. Nat Med 2012; 18 (05) 759-765
  • 121 Phinney DG, Di Giuseppe M, Njah J. , et al. Mesenchymal stem cells use extracellular vesicles to outsource mitophagy and shuttle microRNAs. Nat Commun 2015; 6: 8472
  • 122 Jackson MV, Morrison TJ, Doherty DF. , et al. Mitochondrial transfer via tunneling nanotubes is an important mechanism by which mesenchymal stem cells enhance macrophage phagocytosis in the in vitro and in vivo models of ARDS. Stem Cells 2016; 34 (08) 2210-2223
  • 123 Zhu YG, Feng XM, Abbott J. , et al. Human mesenchymal stem cell microvesicles for treatment of Escherichia coli endotoxin-induced acute lung injury in mice. Stem Cells 2014; 32 (01) 116-125
  • 124 Morrison TJ, Jackson MV, Cunningham EK. , et al. Mesenchymal stromal cells modulate macrophages in clinically relevant lung injury models by extracellular vesicle mitochondrial transfer. Am J Respir Crit Care Med 2017; 196 (10) 1275-1286
  • 125 Wilson JG, Liu KD, Zhuo H. , et al. Mesenchymal stem (stromal) cells for treatment of ARDS: a phase 1 clinical trial. Lancet Respir Med 2015; 3 (01) 24-32
  • 126 Matthay MA, Calfee CS, Zhuo H. , et al. Treatment with allogeneic mesenchymal stromal cells for moderate to severe acute respiratory distress syndrome (START study): a randomised phase 2a safety trial. Lancet Respir Med 2019; 7 (02) 154-162