Synthesis 2021; 53(04): 666-672
DOI: 10.1055/s-0040-1705970
feature

Synthesis of 6-Adamantyl-2-pyridone and Reversible Hydrogen Activation by the Corresponding Bis(perfluorophenyl)borane Complex

Felix Wech
a   Institut für Organische Chemie, Justus-Liebig-Universität Gießen, Heinrich-Buff-Ring 17, 35392 Gießen, Germany   Email: urs.gellrich@org.chemie.uni-giessen.de
,
Tizian Müller
a   Institut für Organische Chemie, Justus-Liebig-Universität Gießen, Heinrich-Buff-Ring 17, 35392 Gießen, Germany   Email: urs.gellrich@org.chemie.uni-giessen.de
,
Jonathan Becker
b   Institut für Anorganische und Analytische Chemie, Justus-Liebig-Universität Gießen, Heinrich-Buff-Ring 17, 35392 Gießen, Germany
,
Urs Gellrich
a   Institut für Organische Chemie, Justus-Liebig-Universität Gießen, Heinrich-Buff-Ring 17, 35392 Gießen, Germany   Email: urs.gellrich@org.chemie.uni-giessen.de
› Author Affiliations
This work was supported by the Deutsche Forschungsgemeinschaft (DFG; German Research Foundation) (GE 3117/1-1).


Abstract

We herein describe the two-step synthesis of 6-adamantyl-2-pyridone from 1-acetyladamantane. The borane complex derived from 6-adamantyl-2-pyridone and the Piers borane liberates dihydrogen at 60 °C. The reverse reaction, hydrogen activation by the formed pyridonate borane is accomplished under mild conditions. The mechanism of the hydrogen activation is studied by DFT computations.

Supporting Information



Publication History

Received: 27 August 2020

Accepted after revision: 05 October 2020

Article published online:
10 November 2020

© 2020. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Welch GC, San Juan RR, Masuda JD, Stephan DW. Science 2006; 314: 1124
  • 3 Gellrich U. Angew. Chem. Int. Ed. 2018; 57: 4779
    • 4a Gunanathan C, Milstein D. Acc. Chem. Res. 2011; 44: 588
    • 4b Khusnutdinova JR, Milstein D. Angew. Chem. Int. Ed. 2015; 54: 12236
    • 4c Gellrich U, Diskin-Posner Y, Shimon LJ. W, Milstein D. J. Am. Chem. Soc. 2016; 138: 13307
  • 5 Wech F, Hasenbeck M, Gellrich U. Chem. Eur. J. 2020; 26: 13445
    • 6a Dureen MA, Stephan DW. J. Am. Chem. Soc. 2009; 131: 8396
    • 6b Chen C, Eweiner F, Wibbeling B, Fröhlich R, Senda S, Ohki Y, Tatsumi K, Grimme S, Kehr G, Erker G. Chem. Asian J. 2010; 5: 2199
  • 7 Hasenbeck M, Müller T, Gellrich U. Catal. Sci. Technol. 2019; 9: 2438
  • 8 Hintermann L, Dang TT, Labonne A, Kribber T, Xiao L, Naumov P. Chem. Eur. J. 2009; 15: 7167
  • 9 CCDC 2024101 and CCDC 2024102 contain the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures.
  • 10 Yang HW, Craven BM. Acta Crystallogr., Sect. B 1998; 54: 912
  • 11 Müller T, Hasenbeck M, Becker J, Gellrich U. Eur. J. Org. Chem. 2019; 451
    • 12a Hellweg A, Hättig C, Höfener S, Klopper W. Theor. Chem. Acc. 2007; 117: 587
    • 12b Caldeweyher E, Bannwarth C, Grimme S. J. Chem. Phys. 2017; 147: 34112
    • 12c Caldeweyher E, Ehlert S, Hansen A, Neugebauer H, Spicher S, Bannwarth C, Grimme S. J. Chem. Phys. 2019; 150: 154122
    • 12d Weigend F. Phys. Chem. Chem. Phys. 2006; 8: 1057
    • 12e Santra G, Sylvetsky N, Martin JM. L. J. Phys. Chem. A 2019; 123: 5129
    • 12f Weigend F, Ahlrichs R. Phys. Chem. Chem. Phys. 2005; 7: 3297
    • 13a Kruse H, Grimme S. J. Chem. Phys. 2012; 136: 154101
    • 13b Grimme S, Brandenburg JG, Bannwarth C, Hansen A. J. Chem. Phys. 2015; 143: 54107
    • 13c Grimme S, Antony J, Ehrlich S, Krieg H. J. Chem. Phys. 2010; 132: 154104
    • 13d Grimme S, Ehrlich S, Goerigk L. J. Comput. Chem. 2011; 32: 1456
    • 13e Weigend F. J. Comput. Chem. 2008; 29: 167
  • 14 Marenich AV, Cramer CJ, Truhlar DG. J. Phys. Chem. B 2009; 113: 6378
  • 15 Soltani Y, Wilkins LC, Melen RL. Angew. Chem. Int. Ed. 2017; 56: 11995
  • 16 Longobardi LE, Johnstone TC, Falconer RL, Russell CA, Stephan DW. Chem. Eur. J. 2016; 22: 12665