CC BY 4.0 · Synthesis 2022; 54(15): 3367-3382
DOI: 10.1055/s-0040-1719922
special topic
Bürgenstock Special Section 2021 – Future Stars in Organic Chemistry

Synthesis of 2,3-Diarylquinoxaline Carboxylic Acids in High-Temperature Water

Fabián Amaya-García
a   Universität Konstanz, Department of Chemistry, Solid State Chemistry, Universitätstrasse 10, 78464, Konstanz, Germany
b   CeMM - Research Centre of Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH BT 25.3, 1090, Vienna, Austria
,
a   Universität Konstanz, Department of Chemistry, Solid State Chemistry, Universitätstrasse 10, 78464, Konstanz, Germany
b   CeMM - Research Centre of Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH BT 25.3, 1090, Vienna, Austria
› Author Affiliations
This work was funded by the Vienna Science and Technology Fund (WWTF) (Grant No. LS17-051) and the Austrian Science Fund (FWF) (Grant No. START Y1037-N28).


Abstract

Aromatic carboxylic acids are prone to decarboxylate in high-temperature water (HTW). While the decarboxylation kinetics of several aromatic carboxylic acids have been explored, studies on their compatibility with organic syntheses in HTW are scarce. Herein, we report the hydrothermal synthesis (HTS) of 2,3-diarylquinoxaline carboxylic acids from 1,2-diarylketones and 3,4-diaminobenzoic acid. A detailed study of the reaction parameters was performed to identify reaction conditions towards minimal decarboxylation. Thirteen 2,3-diarylquinoxaline-6-carboxylic acids are obtained at temperatures between 150–230 °C within 5–30 minutes. The reported conditions feature comparable performance to those of classic syntheses, avoiding volatile organic solvents, strong acids and toxic catalysts. Decarboxylated quinoxalines arise as side products in variable amounts via direct decarboxylation of the 3,4-diaminobenzoic acid. To completely inhibit the decarboxylation, we show that suitable structural analogues of 3,4-diaminobenzoic acid can act as starting compounds. Thus, ester hydrolysis of methyl 3,4-diaminobenzoate and deprotection of di-Boc-protected 3,4-diminobenzoic can be coupled with the HTS of quinoxaline towards quinoxaline carboxylic acids, while fully avoiding decarboxylated side products.

Supporting Information



Publication History

Received: 09 March 2022

Accepted after revision: 07 April 2022

Article published online:
07 June 2022

© 2022. This is an open access article published by Thieme under the terms of the Creative Commons Attribution License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by/4.0/)

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Naidu R, Biswas B, Willett IR, Cribb J, Kumar Singh BK, Paul Nathanail C, Coulon F, Semple KT, Jones KC, Barclay A, Aitken RJ. Environ. Int. 2021; 156: 106616
    • 1b Sheldon RA. ACS Sustainable Chem. Eng. 2017; 6: 32
  • 2 Welton T. Proc. R. Soc. London, Ser. A 2015; 471: 20150502
  • 3 Grodowska K, Parczewski A. Acta Pol. Pharm. Drug Res. 2010; 67: 3
    • 4a Li CJ. Chem. Rev. 2005; 105: 3095
    • 4b Hailes HC. Org. Process Res. Dev. 2007; 11: 114
    • 4c Simon MO, Li CJ. Chem. Soc. Rev. 2012; 41: 1415
    • 4d Cortes-Clerget M, Yu J, Kincaid JR. A, Walde P, Gallou F, Lipshutz BH. Chem. Sci. 2021; 12: 4237
    • 5a Lipshutz BH, Ghorai S, Cortes-Clerget M. Chem. Eur. J. 2018; 24: 6672
    • 5b Hapiot F, Monflier E. β-Cyclodextrin Chemistry in Water. In Science of Synthesis: Water in Organic Synthesis. Kobayashi S. Thieme; Stuttgart: 2012: 773
  • 6 Unterlass MM. Biomimetics 2017; 2: 8
    • 7a Savage PE. Chem. Rev. 1999; 99: 603
    • 7b Bröll D, Kaul C, Krämer A, Krammer P, Richter T, Jung M, Vogel H, Zehner P. Angew. Chem. Int. Ed. 1999; 38: 2998
    • 7c Katritzky AR, Nichols DA, Siskin M, Murugan R, Balasubramanian M. Chem. Rev. 2001; 101: 837
    • 7d Siskin M, Katritzky AR. Chem. Rev. 2001; 101: 825
    • 8a Dallinger D, Kappe CO. Chem. Rev. 2007; 107: 2563
    • 8b Gawande MB, Bonifácio VD. B, Luque R, Branco PS, Varma RS. Chem. Soc. Rev. 2013; 42: 5522
  • 9 Dudd LM, Venardou E, Garcia-Verdugo E, Licence P, Blake AJ, Wilson C, Poliakoff M. Green Chem. 2003; 5: 187
  • 10 Baumgartner B, Svirkova A, Bintinger J, Hametner C, Marchetti-Deschmann M, Unterlass MM. Chem. Commun. 2017; 53: 1229
  • 11 Taublaender MJ, Glöcklhofer F, Marchetti-Deschmann M, Unterlass MM. Angew. Chem. Int. Ed. 2018; 57: 12270
  • 12 Amaya-García F, Caldera M, Koren A, Kubicek S, Menche J, Unterlass MM. ChemSusChem 2021; 14: 1853
    • 13a Pereira JA, Pessoa AM, Cordeiro MN. D. S, Fernandes R, Prudêncio C, Noronha JP, Vieira M. Eur. J. Med. Chem. 2015; 97: 664
    • 13b Gedefaw D, Prosa M, Bolognesi M, Seri M, Andersson MR. Adv. Energy Mater. 2017; 7: 1700575
  • 14 Yashwantrao G, Saha S. Org. Chem. Front. 2021; 8: 2820
    • 15a Hazarika P, Gogoi P, Konwar D. Synth. Commun. 2007; 37: 3447
    • 15b Yadav JS, Subba Reddy BV, Premalatha K, Shankar KS. Synthesis 2008; 3787
    • 15c Hasaninejad A, Zare A, Zolfigol MA, Shekouhy M. Synth. Commun. 2009; 39: 569
    • 15d Liu JY, Liu J, Wang JD, Jiao DQ, Liu HW. Synth. Commun. 2010; 40: 2047
    • 15e Lü HY, Yang SH, Deng J, Zhang ZH. Aust. J. Chem. 2010; 63: 1290
    • 15f Beheshtiha YS, Heravi MM, Saeedi M, Karimi N, Zakeri M, Tavakoli-Hossieni N. Synth. Commun. 2010; 40: 1216
    • 15g Chavan HV, Adsul LK, Bandgar BP. J. Chem. Sci. 2011; 123: 477
    • 15h Bardajee GR. C. R. Chim. 2013; 16: 872
    • 15i Kumar D, Seth K, Kommi DN, Bhagat S, Chakraborti AK. RSC Adv. 2013; 3: 15157
    • 15j Chandra Shekhar A, Ravi Kumar A, Sathaiah G, Raju K, Srinivas PV. S. S, Shanthan Rao P, Narsaiah B. J. Heterocycl. Chem. 2014; 51: 1504
    • 15k Tamuli KJ, Nath S, Bordoloi M. J. Heterocycl. Chem. 2021; 58: 983
  • 16 Delpivo C, Micheletti G, Boga C. Synthesis 2013; 45: 1546
    • 17a Katritzky AR, Balasubramanian M, Siskin M. Energy Fuels 1990; 4: 499
    • 17b Boles JS, Crerar DA, Grissom G, Key TC. Geochim. Cosmochim. Acta 1988; 52: 341
    • 17c Li J, Brill TB. J. Phys. Chem. A 2003; 107: 2667
    • 17d Segura P, Bunnett JF, Villanova L. J. Org. Chem. 1985; 50: 1041
    • 17e Dunn JB, Burns ML, Hunter SE, Savage PE. J. Supercrit. Fluids 2003; 27: 263
    • 17f Lindquist E, Yang Y. J. Chromatogr. A 2011; 1218: 2146
    • 17g Khuwijitjaru P, Plernjit J, Suaylam B, Samuhaseneetoo S, Pongsawatmanit R, Adachi S. Can. J. Chem. Eng. 2014; 92: 810
  • 18 Fu J, Savage PE, Lu X. Ind. Eng. Chem. Res. 2009; 48: 10467
  • 19 An J, Bagnell L, Cablewski T, Strauss CR, Trainor RW. J. Org. Chem. 1997; 62: 2505
    • 20a Katritzky AR, Lapucha AR, Murugan R, Luxem FJ, Siskin M, Brons G. Energy Fuels 1990; 4: 493
    • 20b Katritzky AR, Lapucha AR, Siskin M. Energy Fuels 1990; 4: 506
    • 20c Katritzky AR, Lapucha AR, Siskin M. Energy Fuels 1990; 4: 510
  • 21 Comisar CM, Hunter SE, Walton A, Savage PE. Ind. Eng. Chem. Res. 2008; 47: 577
  • 22 Wang G, Li C, Li J, Jia X. Tetrahedron Lett. 2009; 50: 1438
    • 23a Kaljurand I, Lilleorg R, Murumaa A, Mishima M, Burk P, Koppel I, Koppel IA, Leito I. J. Phys. Org. Chem. 2013; 26: 171
    • 23b Mech P, Bogunia M, Nowacki A, Makowski M. J. Phys. Chem. A 2020; 124: 538
  • 24 Zhao Z, Wisnoski DD, Wolkenberg SE, Leister WH, Wang Y, Lindsley CW. Tetrahedron Lett. 2004; 45: 4873
  • 25 Jahani F, Tajbakhsh M, Golchoubian H, Khaksar S. Tetrahedron Lett. 2011; 52: 1260