A comprehensive study of the symmetric Lévy stable probability density function is presented. This is performed for orders both less than 2, and greater than 2. The latter class of functions are traditionally neglected because of a failure to satisfy non-negativity. The complete asymptotic expansions of the symmetric Lévy stable densities of order greater than 2 are constructed, and shown to exhibit intricate series of transcendentally small terms—asymptotics beyond all orders. It is demonstrated that the symmetric Lévy stable densities of any arbitrary rational order can be written in terms of generalized hypergeometric functions, and a number of new special cases are given representations in terms of special functions. A link is shown between the symmetric Lévy stable density of order 4, and Pearcey’s integral, which is used widely in problems of optical diffraction and wave propagation. This suggests the existence of applications for the symmetric Lévy stable densities of order greater than 2, despite their failure to define a probability density function.

1.
B. B. Mandelbrot, Fractals, Form, Chance, and Dimension (Freeman, San Francisco, 1977).
2.
Lévy Flights and Related Topics in Physics, edited by M. F. Shlesinger, G. M. Zaslavsky, and U. Frisch (Springer, Berlin, 1995).
3.
E. W. Montroll and B. J. West, “On an enriched collection of stochastic processes” in Studies in Statistical Mechanics Vol. vii: Fluctuation Phenomena, edited by E. W. Montroll and J. L. Lebowitz (North-Holland, Amsterdam, 1979).
4.
E. W. Montroll and M. F. Shlesinger, “The wonderful world of random walks” in Nonequilibrium Phenomena II. From Stochastics to Hydrodynamics, edited by J. L. Lebowitz and E. W. Montroll (North-Holland, Amsterdam, 1984).
5.
S.
Chandrasekhar
,
Rev. Mod. Phys.
15
,
1
(
1943
).
6.
V. M. Zolotarev, One Dimensional Stable Distributions (American Mathematical Society, Providence, 1986);
V. V. Uchaikin and V. M. Zolotarev, Chance and Stability, Stable Distributions and Their Applications: Modern Probability and Statistics (VSP Intl. Science, Leiden, 1999).
7.
M. F.
Shlesinger
,
B. J.
West
, and
J.
Klafter
,
Phys. Rev. Lett.
58
,
1100
(
1987
).
8.
C. P.
Dettmann
and
N. E.
Frankel
,
Phys. Rev. E
53
,
5502
(
1995
).
9.
J. P.
Bouchaud
and
A.
Georges
,
Phys. Rep.
195
,
127
(
1990
);
J.
Klafter
,
M. F.
Shlesinger
, and
G.
Zumofen
,
Phys. Today
49
,
33
(
1996
);
M. F.
Shlesinger
,
G.
Zaslavsky
, and
J.
Klafter
,
Nature (London)
363
,
31
(
1993
).
10.
G. M.
Viswanathan
,
V.
Afanasyev
,
S. V.
Buldyrev
,
E. J.
Murphy
,
P. A.
Prince
, and
H. E.
Stanley
,
Nature (London)
381
,
413
(
1996
).
11.
This asymptotic power law behavior of pα(x) does not hold when α is an even integer, in which case the asymptotic power series vanishes and only exponentially small terms remain.
12.
V. Pareto, Le Cours d’Économie Politique (Macmillan, London, 1897).
13.
B. B. Mandelbrot, The Fractal Geometry of Nature (Freeman, San Francisco, 1982).
14.
B. B.
Mandelbrot
,
J. Business
36
,
394
(
1963
).
15.
Fractals and Scaling in Finance, edited by B. B. Mandelbrot (Springer, New York, 1997);
M. Potters and J. P. Bouchaud, Theory of Financial Risks: From Statistical Physics to Risk Management (Cambridge University Press, Cambridge, 2000);
R. N. Mantegna and H. E. Stanley, An Introduction to Econophysics: Correlations and Complexity in Finance (Cambridge University Press, Cambridge, 1999).
16.
B. D. Hughes, “Random Walks and Random Environments,” Random Walks Vol. 1 (Clarendon, Oxford, 1995).
17.
W. Feller, An Introduction to Probability Theory and Its Applications (Wiley, Sydney, 1971), Vol. 2.
18.
B. V. Gnedenko and A. N. Kolmogorov, Limit Distributions for Sums of Independent Random Variables (Addison–Wesley, Reading, MA, 1954).
19.
P. Lévy, Théorie de l’addition des variables aléatories (Gauthier-Villars, Paris, 1937).
20.
When m is an odd integer 〈xm vanishes trivially by symmetry since the symmetric Lévy stable densities are even functions. By the divergence of the moments we refer to the nontrivial moments.
21.
S. Bochner, Lectures on Fourier integrals (Princeton University Press, Princeton, 1959). See also Ref. 3 for a discussion of this, one of Bochner’s original proofs of the non-negativity of pα(x) for α⩽2.
22.
G.
Pólya
,
Mess. Math.
52
,
185
(
1923
).
It is shown here that when α>2 is an even integer (1.4) has infinitely many real zeros, and has finitely many zeros in all other cases. See also
G. Pólya and G. Szegö, Problems and Theorems in Analysis (Springer, Berlin, 1976), Vol. 2, pp. 64, 242–243.
23.
For extensive references of recent work on exponential asymptotics see Asymptotics Beyond all Orders, edited by H. Segur, S. Tanveer, and H. Levine (Plenum, New York, 1991).
24.
V. Kowalenko, N. E. Frankel, M. L. Glasser, and T. Taucher, “Generalised Euler-Jacobi inversion formula and asymptotics beyond all orders,” London Mathematical Society Lecture Note Series No. 214 (Cambridge University Press, Cambridge, 1995).
25.
T. M.
Garoni
,
N. E.
Frankel
, and
M. L.
Glasser
,
J. Math. Phys.
42
,
1860
(
2001
).
26.
R. B.
Paris
,
Proc. R. Soc. London, Ser. A
432
,
391
(
1991
).
27.
D.
Kaminski
,
SIAM (Soc. Ind. Appl. Math.) J. Math. Anal.
20
,
987
(
1989
).
28.
H.
Scher
and
E. W.
Montroll
,
Phys. Rev. B
12
,
2455
(
1975
). It is shown in their Appendix C, for a few cases, how to write the Lévy densities in terms of a finite number of hypergeometric functions.
29.
W. R. Schneider, “Stable Distributions: Fox function representation and generalisation,” in Stochastic Processes in Classical and Quantum Systems, edited by S. Albeverio, G. Casati, and D. Merlini (Springer, Berlin, 1986).
30.
C.
Fox
,
Transp. Res., Part A
98
,
395
(
1961
).
31.
Y. L. Luke, The Special Functions and Their Approximations (Academic, New York, 1969).
32.
A. Erdélyi, W. Magnus, F. Oberhettinger, and F. G. Tricomi, Higher Transcendental Functions (McGraw–Hill, New York, 1953), Vol. 1.
33.
V. M.
Zolotarev
,
Dokl. Acad. Nauh. USSR
98
,
715
(
1954
).
34.
We adhere to the asymptotic terminology of Dingle (Ref. 35) throughout this work.
35.
R. B. Dingle, Asymptotic Expansions: Their Derivation and Interpretation (Academic, London, 1973).
36.
G. H. Hardy, Divergent Series (Clarendon, Oxford, 1963).
37.
G. N. Watson, A Treatise on the Theory of Bessel Functions (Cambridge University Press, Cambridge, 1944).
38.
R. P. Feynman, “Negative Probability,” in Quantum implications: Essays in Honour of David Bohm, edited by B. J. Hiley and F. D. Peat (Methuan, New York, 1987).
39.
R. P.
Feynman
,
Int. J. Theor. Phys.
21
,
467
(
1982
).
40.
W.
Mückenheim
et al.,
Phys. Rep.
133
,
337
(
1986
).
This content is only available via PDF.
You do not currently have access to this content.