Memristive devices are promising components for nanoelectronics with applications in nonvolatile memory and storage, defect-tolerant circuitry, and neuromorphic computing. Bipolar resistive switches based on metal oxides such as TiO2 have been identified as memristive devices primarily based on the “pinched hysteresis loop” that is observed in their current-voltage (i-v) characteristics. Here we show that the mathematical definition of a memristive device provides the framework for understanding the physical processes involved in bipolar switching and also yields formulas that can be used to compute and predict important electrical and dynamical properties of the device. We applied an electrical characterization and state-evolution procedure in order to capture the switching dynamics of a device and correlate the response with models for the drift diffusion of ionized dopants (vacancies) in the oxide film. The analysis revealed a notable property of nonlinear memristors: the energy required to switch a metal-oxide device decreases exponentially with increasing applied current.

1.
G.
Dearnaley
,
A. M.
Stoneham
, and
D. V.
Morgan
,
Rep. Prog. Phys.
33
,
1129
(
1970
).
2.
R.
Waser
and
M.
Aono
,
Nature Mater.
6
,
833
(
2007
).
3.
R.
Waser
,
R.
Dittmann
,
G.
Staikov
, and
K.
Szot
,
Adv. Mater. (Weinheim, Ger.)
21
,
2632
(
2009
).
4.
K.
Tsunoda
,
Y.
Fukuzumi
,
J. R.
Jameson
,
Z.
Wang
,
P. B.
Griffin
, and
Y.
Nishi
,
Appl. Phys. Lett.
90
,
113501
(
2007
).
5.
D.
Jeong
,
H.
Schroeder
, and
R.
Waser
,
Electrochem. Solid-State Lett.
10
,
G51
(
2007
).
6.
A.
Sawa
,
T.
Fujii
,
M.
Kawasaki
, and
Y.
Tokura
,
Appl. Phys. Lett.
88
,
232112
(
2006
).
7.
D. B.
Strukov
,
G. S.
Snider
,
D. R.
Stewart
, and
R. S.
Williams
,
Nature (London)
453
,
80
(
2008
).
8.
L. O.
Chua
,
IEEE Trans. Circuit Theory
18
,
507
(
1971
).
9.
L. O.
Chua
and
S.
Kang
,
Proc. IEEE
64
,
209
(
1976
).
10.
L. O.
Chua
,
IEEE Trans. Circuits Syst.
27
,
1014
(
1980
).
11.
M.
Janousch
,
G. I.
Meijer
,
U.
Staub
,
B.
Delley
,
S. F.
Karg
, and
B. P.
Andreasson
,
Adv. Mater. (Weinheim, Ger.)
19
,
2232
(
2007
).
12.
R.
Meyer
,
L.
Schloss
,
J.
Brewer
,
R.
Lambertson
,
W.
Kinney
,
J.
Sanchez
, and
D.
Rinerson
,
Proceedings of the Ninth Annual Non-Volatile Memory Technology Symposium
,
2008
(unpublished).
13.
D. S.
Jeong
,
H.
Schroeder
, and
R.
Waser
,
Phys. Rev. B
79
,
195317
(
2009
).
14.
D. B.
Strukov
,
J. L.
Borghetti
, and
R. S.
Williams
,
Small
5
,
1058
(
2009
).
15.
D. B.
Strukov
and
R. S.
Williams
,
Appl. Phys. A: Mater. Sci. Process.
94
,
515
(
2009
).
16.
J. J.
Yang
,
F.
Miao
,
M. D.
Pickett
,
D. A. A.
Ohlberg
,
D. R.
Stewart
,
C. N.
Lau
, and
R. S.
Williams
,
Nanotechnology
20
,
215201
(
2009
).
17.
See EPAPS supplementary material at http://dx.doi.org/10.1063/1.3236506 for details of the equations used for the tunneling model, additional experimental data, and data supporting short and long time extrapolations of the dynamical model.
18.
J. L.
Borghetti
,
D. B.
Strukov
,
M. D.
Pickett
,
J. J.
Yang
, and
R. S.
Williams
,
J. Appl. Phys.
(submitted).
19.
J.
Simmons
,
J. Appl. Phys.
34
,
1793
(
1963
).
20.
H.
Tang
,
K.
Prasad
,
R.
Sanjinès
,
P. E.
Schmid
, and
F.
Lévy
,
J. Appl. Phys.
75
,
2042
(
1994
).
21.
J. J.
Yang
,
M. D.
Pickett
,
X.
Li
,
D. A. A.
Ohlberg
,
D. R.
Stewart
, and
R. S.
Williams
,
Nat. Nanotechnol.
3
,
429
(
2008
).
22.
F.
Miao
,
J. J.
Yang
,
D. R.
Stewart
,
R. S.
Williams
, and
C. N.
Lau
,
Appl. Phys. Lett.
Appl. Phys. Lett.
95
,
113503
(
2009
).
23.
N.
Mott
and
R. W.
Gurney
,
Electronic Processes in Ionic Crystals
(
Dover
,
New York
,
1964
).
24.
T.
Tamura
,
T.
Hasegawa
,
K.
Terabe
,
T.
Nakayama
,
T.
Sakamoto
,
H.
Sunamura
,
H.
Kawaura
,
S.
Hosaka
, and
M.
Aono
,
J. Phys.: Conf. Ser.
61
,
1157
(
2007
).
25.
P.
Boggs
,
J.
Donaldson
,
R.
Byrd
, and
R.
Schnabel
,
ACM Trans. Math. Softw.
15
,
348
(
1989
).

Supplementary Material

You do not currently have access to this content.