The short-circuit photocurrent was measured in ferroelectric capacitors of polycrystalline and epitaxial quality. The interest was to study the possible relation between photocurrent and back-switching phenomena due to ferroelectric polarization imprint, as suggested by Pintilie et al [J. Appl. Phys.101, 064109 (2007)]. An interesting relation between the shape of the ferroelectric hysteresis loop and the shape of the photocurrent spectral distribution was found. In polycrystalline samples, the shape of spectral distribution and the sign of photocurrent are changing in time, although the hysteresis is almost symmetrical. However, the hysteresis is not rectangular as in the case of epitaxial films. This behavior suggests a subtle relation between polarization back-switching and photocurrent. In epitaxial samples a peculiar dependence between photocurrent and polarization imprint was found. All these are explained assuming the presence of an internal field, possibly generated by charged defects, which can change its direction and magnitude under illumination, with consequence on the orientation and magnitude of the ferroelectric polarization, and on the sign/shape of the short-circuit photocurrent spectral distribution.

1.
A.
Kholkin
,
O.
Boiarkine
, and
N.
Setter
,
Appl. Phys. Lett.
72
,
130
(
1998
).
2.
Y. S.
Yang
,
S. J.
Lee
,
S.
Yi
,
B. G.
Chae
,
S. H.
Lee
,
H. J.
Joo
, and
M. S.
Jang
,
Appl. Phys. Lett.
76
,
774
(
2000
).
3.
L.
Pintilie
,
I.
Vrejoiu
,
G.
Le Rhun
, and
M.
Alexe
,
J. Appl. Phys.
101
,
064109
(
2007
).
4.
P. J.
Schorn
,
U.
Böttger
, and
R.
Waser
,
Appl. Phys. Lett.
87
,
242902
(
2005
).
5.
A. K.
Tagantsev
,
I.
Stolichnov
,
N.
Setter
, and
J. S.
Cross
,
J. Appl. Phys.
96
,
6616
(
2004
).
6.
A. Q.
Jiang
and
T. A.
Tang
,
J. Appl. Phys.
105
,
061608
(
2009
).
7.
G. H.
Kim
,
H. J.
Lee
,
A. Q.
Jiang
,
M. H.
Park
, and
C. S.
Hwang
,
J. Appl. Phys.
105
,
044106
(
2009
).
8.
J. F.
Scott
, in
Advanced Microelectronics Series
, edited by
K.
Itoh
and
T.
Sakurai
(
Springer-Verlag
,
Berlin, Heidelberg
,
2000
).
9.
V.
Stancu
,
F.
Sava
,
M.
Lisca
,
L.
Pintilie
,
M.
Popescu
, and
J.
Optoel
,
Adv. Mater. (Weinheim, Ger.)
9
,
2967
(
2007
).
10.
I.
Vrejoiu
,
G.
Le Rhun
,
L.
Pintilie
,
D.
Hesse
,
M.
Alexe
, and
U.
Goesele
,
Adv. Mater.
18
,
1657
(
2006
).
11.
A.
Wu
,
P. M.
Vilarinho
,
D.
Wu
, and
A.
Gruverman
,
Appl. Phys. Lett.
93
,
262906
(
2008
).
12.
Y.
Kim
,
S.
Buehlmann
,
S.
Hong
,
S. H.
Kim
, and
K.
No
,
Appl. Phys. Lett.
90
,
072910
(
2007
).
13.
A.
Picinin
,
M. H.
Lente
,
J. A.
Eiras
, and
J. P.
Rino
,
Phys. Rev. B
69
,
064117
(
2004
).
14.
I.
Vrejoiu
,
G.
Le Rhun
,
N. D.
Zakharov
,
D.
Hesse
,
L.
Pintilie
, and
M.
Alexe
,
Philos. Mag.
86
,
4477
(
2006
).
15.
S.
Bühlmann
,
E.
Colla
, and
P.
Muralt
,
Phys. Rev. B
72
,
214120
(
2005
).
16.
A. K.
Tagantsev
and
I. A.
Stolichnov
,
Appl. Phys. Lett.
74
,
1326
(
1999
).
17.
D.
Dimos
,
W. L.
Warren
,
M. B.
Sinclair
,
B. A.
Tuttle
, and
R. W.
Schwartz
,
J. Appl. Phys.
76
,
4305
(
1994
).
18.
W. L.
Warren
,
D.
Dimos
,
G. E.
Pike
,
B. A.
Tuttle
,
M. V.
Raymond
,
R.
Ramesh
, and
J. T.
Evans
,
Appl. Phys. Lett.
67
,
866
(
1995
).
19.
S. M.
Sze
,
Physics of Semiconductor Devices
, 2nd ed. (
Wiley
,
New York
,
1981
).
20.
M.
Qin
,
K.
Yao
, and
Y. C.
Liang
,
Appl. Phys. Lett.
95
,
022912
(
2009
).
21.
M.
Qin
,
K.
Yao
,
Y. C.
Liang
, and
S.
Shannigrahi
,
J. Appl. Phys.
101
,
014104
(
2007
).
22.
M.
Qin
,
K.
Yao
, and
Y. C.
Liang
,
J. Appl. Phys.
105
,
061624
(
2009
).
23.
F.
Zheng
,
J.
Xu
,
L.
Fang
,
M.
Shen
, and
X.
Wu
,
Appl. Phys. Lett.
93
,
172101
(
2008
).
24.
L. A.
Delimova
,
V. S.
Yuferev
,
I. V.
Grekhov
,
P. V.
Afanasjev
,
G. P.
Kramar
,
A. A.
Petrov
, and
V. P.
Afanasjev
,
Appl. Phys. Lett.
91
,
112907
(
2007
).
25.
R.
Ghosh
and
D.
Basak
,
J. Appl. Phys.
101
,
113111
(
2007
).
26.
N.
Kopidakis
,
N. R.
Neale
,
K.
Zhu
,
J.
van de Lagemaat
, and
A. J.
Frank
,
Appl. Phys. Lett.
87
,
202106
(
2005
).
27.
T.
Ohashi
,
H.
Hosaka
, and
T.
Morita
,
Appl. Phys. Lett.
93
,
192102
(
2008
).
You do not currently have access to this content.